1/2+1/3+1/4+1/5+……+1/n的和
1/2+1/3+1/4+1/5+……+1/n的和
尤拉常数(Euler-Mascheroni constant)
尤拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数.它的定义是调和级数与自然对数的差值.
学过高等数学的人都知道,调和级数S=1+1/2+1/3+……是发散的,
证明如下:
由于ln(1+1/n)ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)
=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]
=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
由于
lim Sn(n→∞)≥lim ln(n+1)(n→∞)=+∞
所以Sn的极限不存在,调和级数发散.
但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为
Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)
=ln(n+1)-ln(n)=ln(1+1/n)
由于
lim Sn(n→∞)≥lim ln(1+1/n)(n→∞)=0
因此Sn有下界
而
Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]
=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)
将ln(1+1/n)展开,取其前两项,由于舍弃的项之和大于0,故
ln(1+1/n)-1/(n+1)>1/n-1/(2n^2)-1/(n+1)=1/(n^2+n)-1/(2n^2)>0
即ln(1+1/n)-1/(n+1)>0,所以Sn单调递减.由单调有界数列极限定理,可知Sn必有极限,因此 S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)存在.
于是设这个数为γ,这个数就叫作尤拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数.在微积分学中,尤拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等.例如求lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞),可以这样做:
lim[1/(n+1)+1/(n+2)+…+1/(n+n)](n→∞)=lim[1+1/2+1/3+…+1/(n+n)-ln(n+n)](n→∞)-lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)+lim[ln(n+n)-ln(n)](n→∞)=γ-γ+ln2=ln2
1/1×2+1/2×3+1/3×4+1/4×5+…+1/n(n+1)=?
解:原式=1/1-1/2+1/2-1/3+1/3-1/4+…+1/n-1/[n+1]
=1-1/[1+n]
=n/[n+1]
分析:1/1*2=1-1/2
1/2*3=1/2-1/3
从而得解
1/1×2+1/2×3+1/3×4+1/4×5+…+1/39×40=?
39/40,就是1/1×2+1/2×3+1/3×4+1/4×5+…+1/n(n+1)
可以化为1-1/2+1/2-1/3+1/3-1/4+…1/n-1/(n+1)
1/1*2+1/2*3+1/3*4+1/4*5+^+1/199*200=?
1/(1*2)+1/(2*3)+...+1/(199*200)
=( 1- 1/2) +(1/2-1/3)+...+(1/199-1/200)
=1- 1/200
=199/200
1/1×2+1/2×3+1/3×4+1/4×5+……+1/2009×2010
裂项法:
1/1×2+1/2×3+1/3×4+1/4×5+……+1/2009×2010
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/2009-1/2010
=1-1/2010
=2009/2010
1/2×2+1/4×3+1/6×4+1/8×5+…1/18×10=?
1/2×2+1/4×3+1/6×4+1/8×5+…1/18×10
= 1/(2*1)*2+1/(2*2)*3+1/(2*3)*4+……1/(2*9)*10
= 1/2(1/1*2+1/2*3+1/3*4+……+1/9*10)
= 1/2(1/1-1/2+1/2-1/3+1/3-1/4+……+1/9-1/10)
= 1/2(1/1-1/10)
= 9/20
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
1/n(n+2)=(1/2)[1/n-1/(n+2)]
1
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
=(1/2)[1-(1/3)+(1/2)-(1/4)+(1/3)-(1/5)+……+1/n-1/(n+2)]
=(1/2)[(3/2)-3/(n+1)(n+2)]
2
(1/2)[(3/2)-3/(n+1)(n+2)]
=(3/4)-3/(n+1)(n+2)<3/4
1/1×2+1/3×4+1/4×5+……+1/2008×2009 1/1×3+1/3×5+……1/2007×2009 1-2+3-4+5-6……+2007-2008
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/2008-1/2009)
=1-1/2+1/2-1/3+1/3-1/4+……+1/2008-1/2009
中间正负抵消
=1-1/2009
=2008/2009
1/1×3+1/3×5+1/5×7 +……+1/2007×2009
=(1-1/3+1/3-1/5+1/5-1/7+……+1/2007-1/2009)/2
=(1-1/2009)/2
=1004/2009
1-2+3-4+5-6+……+2007-2008
=[1-2]+[3-4]+[5-6]+[7-8]+....+[2007-2008]
=[-1]+[-1]+....+[-1]
=-1*1004
=-1004
1/3+1/4+1/5+…+1/n=?
百度上有类似的题目
1/3+1/4+1/5+…+1/n=1+1/2+1/3+...+1/n-1-1/2= ln(n) + r-1-1/2
r的值,约为0.577218,称为尤拉常数
所以最终等于ln(n) -0.942782
1/1×2+1/2×3+1/3×4+1/4×5+……1/39×40
(1- 1/2) + (1/2 -1/3) +(1/3 -1/4)……(1/39- 1/40)= 1- 1/40 =39/40