f'(0) 存在,且lim(x趋向于0) 1/x[f(x)-f(x/3)]=a,求'f(0)
1个回答
展开全部
lim(x->0)[f(x)-f(x/3)]/x
=lim(x->0)[f(x)-f(0)+f(0)-f(x/3)]/x
=lim(x->0)[f(x)-f(0)]/(x-0)-lim(x->0)[f(x/3)-f(0)]/x
=f'裂虚(0)-lim(x->洞源桐0)(1/纳坦3)*[f(x/3)-f(0)]/(x/3-0)
=f'(0)-1/3*lim(x/3->0)[f(x/3)-f(0)]/(x/3-0)
=f'(0)-1/3*f'(0)
=2/3*f'(0)
即2/3*f'(0)=a
所以f'(0)=3a/2
=lim(x->0)[f(x)-f(0)+f(0)-f(x/3)]/x
=lim(x->0)[f(x)-f(0)]/(x-0)-lim(x->0)[f(x/3)-f(0)]/x
=f'裂虚(0)-lim(x->洞源桐0)(1/纳坦3)*[f(x/3)-f(0)]/(x/3-0)
=f'(0)-1/3*lim(x/3->0)[f(x/3)-f(0)]/(x/3-0)
=f'(0)-1/3*f'(0)
=2/3*f'(0)
即2/3*f'(0)=a
所以f'(0)=3a/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询