
已知矩阵A={1 -2 3;-3 6 -9 ;2 -4 6},求一个三阶矩阵B,且R(B)=2使得AB=0
展开全部
要使AB=0,则B的列向量必为Ax=0的解,将A进行初等变化为{1 -2 3;-0 0 0 ;0 0 0},可得基础解系(2 1 0)T,(-3 0 1)T,所以B={2 -3 0;1 0 0 ;0 1 0}满足条件
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |