两矩阵相乘的秩的性质

 我来答
黑科技1718
2022-10-13 · TA获得超过5898个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.7万
展开全部
关系:r(A)+r(B)<=n;
推导过程如下:
设AB = 0, A是mxn, B是nxs 矩阵;
则 B 的列向量都是 AX=0的秩;
所以 r(B)<=n-r(A);
所以 r(A)+r(B)<=n。

扩展资料

  秩性质:

  我们假定 A是在域 F上的 m× n矩阵并描述了上述线性映射

  只有零矩阵有秩 0 A的秩最大为 min(m,n) f是单射,当且仅当 A有秩 n(在这种情况下,我们称 A有“满列秩”)。

  f是满射,当且仅当 A有秩 m(在这种情况下,我们称 A有“满行秩”)。

  在方块矩阵A(就是 m= n) 的情况下,则 A是可逆的,当且仅当 A有秩 n(也就是 A有满秩)。如果 B是任何 n× k矩阵,则 AB的秩最大为 A的秩和 B的秩的小者。

  即:秩(AB)≤min(秩(A),秩(B)) 推广到若干个矩阵的情况。

  就是:秩(A1A2...Am)≤min(秩(A1),秩(A2),...秩(Am)) 证明:考虑矩阵的秩的线性映射的定义,令A、B对应的线性映射分别为 f和 g,则秩(AB)表示复合映射 f·g,它的象 Im f·g是 g的像 Im g在映射 f作用下的象。

  然而 Im g是整个空间的一部分,因此它在映射 f作用下的象也是整个空间在映射 f作用下的象的一部分。也就是说映射 Im f·g是Im f的一部分。

  对矩阵就是:秩(AB)≤秩(A)。对于另一个不等式:秩(AB)≤秩(B),考虑 Im g的一组基:(e1,e2,...,en),容易证明(f(e1),f(e2),...,f(en))生成了空间 Im f·g,于是 Im f·g的维度小于等于Im g的维度。

  对矩阵就是:秩(AB)≤秩(B)。因此有:秩(AB)≤min(秩(A),秩(B))。若干个矩阵的情况证明类似。

  作为 "<" 情况的一个例子,考虑积 两个因子都有秩 1,而这个积有秩 0。可以看出,等号成立当且仅当其中一个矩阵(比如说 A)对应的线性映射不减少空间的维度,即是单射,这时 A是满秩的。

  于是有以下性质:如果 B是秩 n的 n× k矩阵,则 AB有同 A一样的.秩。如果 C是秩 m的 l× m矩阵,则 CA有同 A一样的秩。A的秩等于 r,当且仅当存在一个可逆 m× m矩阵 X和一个可逆的 n× n矩阵 Y使得 这里的 Ir指示 r× r单位矩阵。证明可以通过高斯消去法构造性地给出。

  矩阵的秩加上矩阵的零化度等于矩阵的纵列数(这就是秩-零化度定理)。

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式