材料学常识
1个回答
展开全部
1.材料科学与工程专业的知识领域
1.掌握金属材料、无机非金属材料、高分子材料、防腐专业以及其它高新技术材料科学的基础理论和材料合成与制备、材料复合、材料设计等专业基础知识;
2.掌握材料性能检测和产品质量控制的基本知识,具有研究和开发新材料、新工艺的初步能力;
3.掌握材料加工的基本知识,具有正确选择设备进行材料研究、材料设计、材料研制的初步能力;
4.具有该专业必需的机械设计、电工与电子技术、计算机应用的基本知识和技能;
5.熟悉技术经济管理知识;
6.掌握文献检索、资料查询的基本方法,具有初步的科学研究和实际工作能力。
7.熟练掌握材料测试的仪器使用。
2.材料科学与工程学什么
在《普通高等学校本科专业目录》中,材料科学与工程属于工学里材料类之中的一个一级学科,下设的二级学科包括材料学、材料物理与化学、材料加工工程等几个主要的专业方向。
材料类还包含很多专业,主要有:金属材料工程、无机非金属材料工程、复合材料与工程、高分子材料与工程等。 材料科学与工程专业在大学一、二年级一般会安排基础科目的学习,如高等数学、线性代数、普通物理、计算机基础、C语言、英语等。
高年级以后会开设专业课程,如无机化学、有机化学、物理化学、分析化学、材料科学与工程概论、材料物理性能、材料力学、材料工程基础、材料专业基础实验、工程材料力学性能、现代材料研究技术,等等。(专业课程因各校侧重不同会有一定差异)。
3.材料学
材料科学与工程(英文名:Materials Science and Engineering,缩写MSE)。
在国务院学位委员会学科评议组制定和颁布的《授予博士、硕士学位和培养研究生的学科、专业目录》中,材料科学与工程属于工学学科门类之中的其中一个一级学科,下设3个二级学科,分别是:材料物理与化学、材料学、材料加工工程。 材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。
在现代科学技术中,材料科学是国民经济发展的三大支柱之一。主要专业方向有金属材料、无机非金属材料、耐磨材料、表面强化、材料加工等。
业特色 材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。 [1] 材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、材料科学研究者 高素质全面发展的科学研究与工程技术人才。
培养要求 材料科学与工程专业学生主要学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。
掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。 掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。
[2] 『如果我的回答对您有帮助,请点击下面的“好评”,谢谢,您的采纳是对我莫大的支持。』。
4.材料科学基础
通过在微观结构层次上的深入研究,发现复合材料界面附近的增强相和基体相由于在复杂的物理和化学因素作用下,变得具有既不同于基体相又不同于增强相组分本体的复杂结构,同时发现这一结构和形态会对复合材料的宏观性能产生影响,所以界面附近这一结构与性能发生变化的微区也可作为复合材料的一相,称为“界面相”。
固态相变的基本概念(点击下面的链接就能看见)
file:/C:/Documents%20and%20Settings/Administrator/Local%20Settings/Temporary%20Inter%20Files/Content.IE5/016K7XVX/624615.61%5B1%5D.
5.材料科学基础
加工硬化是金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等,从而使晶粒硬度加强。
细晶强化是通过细化晶粒而使金属材料力学性能提高的方法。细晶强化的强化规律,晶界越多,晶粒越细,根据霍尔-配奇关系式,晶粒的平均值(d)越小,材料的屈服强度就越高。(另外,我个人这么理解的:位错等缺陷基本都集中在晶界部位,因此晶界的强度比晶内大,那你想想,肯定是晶粒越细强度越大咯)
固溶强化是融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。(受力的时候,固溶原子就像钉子一样阻碍位错运动晶粒的变形,但是也不是钉子越多越好)
第二相强化:复相合金与单相合金相比,除基体相以外,还有第二相得存在。当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。这种强化作用称为第二相强化。第二相强化的主要原因是它们与位错间的交互作用,阻碍了位错运动,提高了合金的变形抗力。
(总的来说,一个晶体材料的强度提高基本都是因为材料内部的那些缺陷,包括固溶粒子、第二相或者说位错自己的缠结,从而阻碍了晶界位错的运动,使得宏观表现出来材料的硬度变大了。这个是我个人的理解)
其实这些东西去图书馆找一本材料科学基础或金属学的书,上面应该有比较全面的解释。
1.掌握金属材料、无机非金属材料、高分子材料、防腐专业以及其它高新技术材料科学的基础理论和材料合成与制备、材料复合、材料设计等专业基础知识;
2.掌握材料性能检测和产品质量控制的基本知识,具有研究和开发新材料、新工艺的初步能力;
3.掌握材料加工的基本知识,具有正确选择设备进行材料研究、材料设计、材料研制的初步能力;
4.具有该专业必需的机械设计、电工与电子技术、计算机应用的基本知识和技能;
5.熟悉技术经济管理知识;
6.掌握文献检索、资料查询的基本方法,具有初步的科学研究和实际工作能力。
7.熟练掌握材料测试的仪器使用。
2.材料科学与工程学什么
在《普通高等学校本科专业目录》中,材料科学与工程属于工学里材料类之中的一个一级学科,下设的二级学科包括材料学、材料物理与化学、材料加工工程等几个主要的专业方向。
材料类还包含很多专业,主要有:金属材料工程、无机非金属材料工程、复合材料与工程、高分子材料与工程等。 材料科学与工程专业在大学一、二年级一般会安排基础科目的学习,如高等数学、线性代数、普通物理、计算机基础、C语言、英语等。
高年级以后会开设专业课程,如无机化学、有机化学、物理化学、分析化学、材料科学与工程概论、材料物理性能、材料力学、材料工程基础、材料专业基础实验、工程材料力学性能、现代材料研究技术,等等。(专业课程因各校侧重不同会有一定差异)。
3.材料学
材料科学与工程(英文名:Materials Science and Engineering,缩写MSE)。
在国务院学位委员会学科评议组制定和颁布的《授予博士、硕士学位和培养研究生的学科、专业目录》中,材料科学与工程属于工学学科门类之中的其中一个一级学科,下设3个二级学科,分别是:材料物理与化学、材料学、材料加工工程。 材料科学与工程专业是研究材料成分、结构、加工工艺与其性能和应用的学科。
在现代科学技术中,材料科学是国民经济发展的三大支柱之一。主要专业方向有金属材料、无机非金属材料、耐磨材料、表面强化、材料加工等。
业特色 材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。 [1] 材料科学与工程专业培养具备包括金属材料、无机非金属材料、高分子材料等材料领域的科学与工程方面较宽的基础知识,能在各种材料的制备、加工成型、材料结构与性能等领域从事科学研究与教学、技术开发、工艺和设备设计、技术改造及经营管理等方面工作,适应社会主义市场经济发展的高层次、材料科学研究者 高素质全面发展的科学研究与工程技术人才。
培养要求 材料科学与工程专业学生主要学习材料科学与工程的基础理论,学习与掌握材料的制备、组成、组织结构与性能之间关系的基本规律。受到金属材料、无机非金属材料、高分子材料、复合材料以及各种先进材料的制备、性能分析与检测技能的基本训练。
掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发分析与检测技能的基本训练。 掌握材料设计和制备工艺设计、提高材料的性能和产品的质量、开发研究新材料和新工艺方面的基本能力。
[2] 『如果我的回答对您有帮助,请点击下面的“好评”,谢谢,您的采纳是对我莫大的支持。』。
4.材料科学基础
通过在微观结构层次上的深入研究,发现复合材料界面附近的增强相和基体相由于在复杂的物理和化学因素作用下,变得具有既不同于基体相又不同于增强相组分本体的复杂结构,同时发现这一结构和形态会对复合材料的宏观性能产生影响,所以界面附近这一结构与性能发生变化的微区也可作为复合材料的一相,称为“界面相”。
固态相变的基本概念(点击下面的链接就能看见)
file:/C:/Documents%20and%20Settings/Administrator/Local%20Settings/Temporary%20Inter%20Files/Content.IE5/016K7XVX/624615.61%5B1%5D.
5.材料科学基础
加工硬化是金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等,从而使晶粒硬度加强。
细晶强化是通过细化晶粒而使金属材料力学性能提高的方法。细晶强化的强化规律,晶界越多,晶粒越细,根据霍尔-配奇关系式,晶粒的平均值(d)越小,材料的屈服强度就越高。(另外,我个人这么理解的:位错等缺陷基本都集中在晶界部位,因此晶界的强度比晶内大,那你想想,肯定是晶粒越细强度越大咯)
固溶强化是融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。(受力的时候,固溶原子就像钉子一样阻碍位错运动晶粒的变形,但是也不是钉子越多越好)
第二相强化:复相合金与单相合金相比,除基体相以外,还有第二相得存在。当第二相以细小弥散的微粒均匀分布于基体相中时,将会产生显著的强化作用。这种强化作用称为第二相强化。第二相强化的主要原因是它们与位错间的交互作用,阻碍了位错运动,提高了合金的变形抗力。
(总的来说,一个晶体材料的强度提高基本都是因为材料内部的那些缺陷,包括固溶粒子、第二相或者说位错自己的缠结,从而阻碍了晶界位错的运动,使得宏观表现出来材料的硬度变大了。这个是我个人的理解)
其实这些东西去图书馆找一本材料科学基础或金属学的书,上面应该有比较全面的解释。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询