用数学归纳法证明:1^2+2^2+…+n^2=n(n+1)(2n+1)/6(n是正整数).

 我来答
新科技17
2022-07-22 · TA获得超过5911个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.4万
展开全部
当n=1时,左边=1^2=1右边=1*(1+1)*(2+1)/6=1相符;设n=k时成立即:1^2+2^2+…+k^2=k(k+1)(2k+1)/6则1^2+2^2+…+k^2+(k+1)^2=k(k+1)(2k+1)/6+(k^2+2k+1)=(2k^3+3k^2+k+6k^2+12k+6)/6=(k+1)(k+2)(2k+3)/6=(k+1)[(k+1)+1...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式