用数学归纳法证明:1^2+2^2+…+n^2=n(n+1)(2n+1)/6(n是正整数). 我来答 1个回答 #热议# 上班途中天气原因受伤算工伤吗? 新科技17 2022-07-22 · TA获得超过5911个赞 知道小有建树答主 回答量:355 采纳率:100% 帮助的人:75.4万 我也去答题访问个人页 关注 展开全部 当n=1时,左边=1^2=1右边=1*(1+1)*(2+1)/6=1相符;设n=k时成立即:1^2+2^2+…+k^2=k(k+1)(2k+1)/6则1^2+2^2+…+k^2+(k+1)^2=k(k+1)(2k+1)/6+(k^2+2k+1)=(2k^3+3k^2+k+6k^2+12k+6)/6=(k+1)(k+2)(2k+3)/6=(k+1)[(k+1)+1... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: