如何判断一元二次方程是否有实数根?

 我来答
帐号已注销
2023-01-02 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)。

非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。

性质一

n次单位根的模为1,即|εk|=1

性质二

两个n次单位根εj与εk 的乘积还是一个n次单位根,且εjεk =εj+k

推论1:εj-1=ε-j

推论2:

εkm=εmk

推论3:

若k除以n的余数为r,则εk=εr

注:它说明εk等价于r=0

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式