用换元积分法求∫√[(x+1)-1]/[√(x+1)+1]dx的不定积分

 我来答
科创17
2022-08-04 · TA获得超过5862个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:169万
展开全部
令√(x+1)=u,则:x+1=u^2,∴dx=2udu.∴∫{[√(x+1)-1]/[√(x+1)+1]}dx=2∫[(u-1)/(u+1)]udu=2∫[(u+1 -2)/(u+1)]udu= 2∫udu-4∫[u/(u+1)]du= u^2-4∫[(u+1-1...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式