为什么积分上限函数对变动上限求导等于f(x)的导数呢?
[∫[0,x] f(t)dt]'=f(x),即:变动上限积分对变动上限的导数,等于将变动上限带入被积函数。例:
F(x)=∫[0,x] sint/t dt 尽管 sint/t 的原函数 F(x) 无法用初等函数表示,但F(x)的导数却可以根据【变动上限积分求导法则】算出:[F(x)]'=[∫[0,x] sint/t dt ]'=sinx/x。
一般形式的【变动上限积分求导法则】为:【∫[φ(x) ,ψ(x)] f(t)dt】' = f(φ(x))φ'(x)-f(ψ(x))ψ'(x)
设函数y=f(x) 在区间[a,b]上可积,对任意x∈[a,b],y=f(x)在[a,x] 上可积,且它的值与x构成一种对应关系(如概述中的图片所示),称Φ(x)为变上限的定积分函数。
积分上限函数的定积分:
设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。
在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。