怎样用向量证明二面角的大小关系?

 我来答
轩轩智慧先锋
高能答主

2023-01-25 · 希望是生命中的那束光,照亮我们的未来。
轩轩智慧先锋
采纳数:2714 获赞数:533469

向TA提问 私信TA
展开全部

解:设面BAG法向量为n→=(x,y,1)

则√3/2*x+3/2*y+√3=0

4y=0

解得n→=(-2,0,1)

设二面角P-AC-B为θ,由图像得

cosθ=cos<n→,PB→>

=(2√3+0+0)/[√(4+0+1)*√(3+1+0)]

=2√3/2√5

=√15/5


扩展资料

性质:

1、同一二面角的任意两个平面角相等,较大二面角的平面角较大。

2、两个二面角的和或差所对应的平面角,是原来两个二面角所对应的平面角的和或差。

3、二面角可以平分,且平分面是唯一的。

4、对棱二面角相等。

5、二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,在一个更理想的三角形中。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式