四年级小学生奥数题五篇
1.四年级小学生奥数题
1、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?
答案与解析:
分析:把4个数全加起来就是每个数都加了3遍,所以,这四个数的和等于(45+46+49+52)÷3=64。用总数减去的三数之和,就是这四个数中的最小数,即64-52=12。
2、今年是1996年。父母的年龄之和是78岁,兄弟的年龄之和是17岁。四年后,父亲的年龄是弟弟的4倍,母亲的年龄是哥哥的年龄的3倍。那么当父亲的年龄是哥哥的年龄的3倍时是公元哪一年?
答案与解析:
四年后,父母的年龄和是78+8=86岁,兄弟的年龄和是17+8=25岁,父=4*弟,母=3*兄,那么父+母=3*(弟+兄)+弟,所以弟弟是11岁,哥哥是25-11=14岁,父亲是11*4=44岁,母亲是14*3=42岁。显然,再过1年后父亲45岁,哥哥是15岁,父亲是哥哥年龄的3倍。
所以,当父亲的年龄是哥哥的年龄的3倍时是4=1=5年后,即公元2001年。
2.四年级小学生奥数题
欧欧、小美、奥斑马、龙博士四人每人有一筐苹果,如果欧欧拿出12个给小美,小美拿出14个给奥斑马,奥斑马拿出22个给龙博士,龙博士拿出16个给欧欧后,四人筐子里的苹果一样多,此时4筐苹果共有112个,求原来每人各有多少个苹果?
考点:逆推问题。
分析:根据“四人筐子里的苹果一样多,此时4筐苹果共有112个,”可得出此时每个筐子里有1124=28个苹果,据此可得欧欧原来有28+12-16=24个,小美原有28-12+14=30个,奥斑马原有28+22-14=36个,龙博士原有28+16-22=22个,据此即可解答。
解答:解:1124=28(个)
所以欧欧原来有28+12-16=24(个)
小美原有28-12+14=30(个)
奥斑马原有28+22-14=36(个)
龙博士原有28+16-22=22(个)
答:原来欧欧有24个,小美有30个,奥斑马有36个,龙博士有22个。
3.四年级小学生奥数题
1、为了方便四年级学生练习奥数题,为您提供四年级奥数题及答案:游泳路程,此题属于高等难度奥数题,希望同学们细心解答,然后再来查看下面的答案。
游泳路程问题:
两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0。6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。如果不计转向的时间,那么在这段时间内两人共相遇多少次?
游泳路程答案:
有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;
于是,有30×(2n-1)
2、某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?
答案与解析:
由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分别做全部的的工作时间比是2:3
时间比的差是1份
实际时间的差是3天
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6
4.四年级小学生奥数题
1、甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。如果他们三人共有81元,那么三人原来的钱分别是多少元?
答案与解析:
三人最后一样多,那么每人都是81÷3=27元;还原:甲和乙把钱还给丙:每人增加2倍,就是原来的3倍,那么甲和乙都是27/3=9元,丙是27+2*2*9=63元;甲和丙把钱还给乙:甲=9/3=3元,丙=63/3=21元,乙=9+2*3+2*21=57元;乙和丙把钱还给甲:乙=57/3=19元,丙=21/3=7元,甲=3+2*19+2*7==55元。所以,三人原来的钱分别是55、19和7元。
2、(1+2+3+……+2009+2010+……+2+1)÷2010
【分析】1+2+3+……+2009+2010+……+2+1)÷2010
=2010×2010÷2010
=2010
3、123×9+82×8+41×7-2009
【分析】123×9+82×8+41×7-2010
=41×3×9+41×2×8+41×7-2010
=41×(27+16+7)-2010
=2050-2010
=40
5.四年级小学生奥数题
1、把1296分为甲、乙、丙、丁四个数,如果甲数加上2,乙数减去2,丙数乘以2,丁数除以2,则四个数相等。求这四个数各是多少?
答案与解析:甲数=2个丙数+2。乙数=2个丙数-2。丁数=2个丙数×2。
1296÷(2个丙数+2+2个丙数-2+一个丙数+2个丙数×2)=丙数
即:1296÷(2+2+1+4)=丙数
甲数=2个丙数+2=……同理可求……
2、计算巧算:
186576×199911-199912×186575
解:186576×199911-199912×186575
=(186575+1)×199911-(199911+1)×186575
=186575×199911+1×199911-199911×186575-1×186575
=199911-186575
=13336
3、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?
答案及解析:
根据只把底增加8米,面积就增加40平方米,由平行四边形的面积公式可求出原来平行四边形的高是5。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底是8。再用原来的底乘以原来的高就是要求的面积。
(40÷5)×(40÷8)=40(平方米)
所以平行四边形地原来的面积是40平方米。
广告 您可能关注的内容 |