初二数学题 求解 。速度
1.如图,在RT△ABC中,∠ACB=90°,∠A=30°,DE是AC的垂直平分线(1)求证△CBE是等边三角形(2)指出图中所有与CE相等的线段2.如图,△ABC是等边...
1.如图,在RT△ABC中,∠ACB=90°,∠A=30°,DE是AC的垂直平分线
(1)求证 △CBE是等边三角形 (2)指出图中所有与CE相等的线段
2.如图,△ABC是等边三角形,BD是高,延长BC至E,DB=DE,求证:CB=CD 展开
(1)求证 △CBE是等边三角形 (2)指出图中所有与CE相等的线段
2.如图,△ABC是等边三角形,BD是高,延长BC至E,DB=DE,求证:CB=CD 展开
3个回答
展开全部
第1题:(1)证明:因为DE垂直平分AC,所以AD=CD,且∠ADE=∠CDE=90°,
而DE是△ADE和△CDE的公共边,所以△ADE≌△CDE
所以∠BCE=30°,∠CED=∠AED=60°
所以∠BEC=∠ECB=∠CBE=60°,即△CBE是等边三角形。
(2)图中与CE相等的线段有AE、BE、BC。
第2题:你题目抄错了,要证明的是CD=CE。
证明:因为BD⊥AC,所以∠DBC=30°
又因为BD=DE,所以∠DEC=∠DBC=30°
又由∠ACB=60°,所以∠DCE=120°
因为三角形内角和为180°,故∠CDE=∠DEC=30°
所以有CD=CE
而DE是△ADE和△CDE的公共边,所以△ADE≌△CDE
所以∠BCE=30°,∠CED=∠AED=60°
所以∠BEC=∠ECB=∠CBE=60°,即△CBE是等边三角形。
(2)图中与CE相等的线段有AE、BE、BC。
第2题:你题目抄错了,要证明的是CD=CE。
证明:因为BD⊥AC,所以∠DBC=30°
又因为BD=DE,所以∠DEC=∠DBC=30°
又由∠ACB=60°,所以∠DCE=120°
因为三角形内角和为180°,故∠CDE=∠DEC=30°
所以有CD=CE
展开全部
1.解:(1)因为,∠ACB=90°,∠A=30°,所以∠B=60°,因为DE是AC的垂直平分线,所以AE=CE,∠ACE=∠CAE=30°,因为∠ACB=90°,所以∠ECB=60°,所以△CBE是等边三角形
(2)与CE相等的线段有BE BC AE
(2)与CE相等的线段有BE BC AE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
孩子,不幸的告诉你CBE不是三角形,是一条直线,证不出他是个三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询