已知函数f(x)=2cosxcos(x-π/6)-根号3sin²x+sinxcosx
已知函数f(x)=2cosxcos(x-π/6)-根号3sin²x+sinxcosx(1)求f(x)的最小正周期(2)当x属于[0,π/2]时,求f(x)的最小...
已知函数f(x)=2cosxcos(x-π/6)-根号3sin²x+sinxcosx
(1) 求f(x)的最小正周期
(2)当x属于[0,π/2] 时,求f(x)的最小值 展开
(1) 求f(x)的最小正周期
(2)当x属于[0,π/2] 时,求f(x)的最小值 展开
1个回答
展开全部
首先化简
f(x)=2cosxcos(x-π/6)-√3sin^2x+sinxcosx
=2cosxcos(x-π/6)-2sinx(√3/2sinx-1/2cosx)
=2cosxcos(x-π/6)-2sinx(sinxcosπ/6-cosxsinπ/6)
=2cosxcos(x-π/6)-2sinxsin(x-π/6)
=2cos(x+x-π/6)
=2cos(2x-π/6)
(1)f(x)的最小正周期T=2π/w=2π/2=π
(2)当x属于[0,π/2] 时,2x-π/6属于[-π/6,5π/6]
所以cos(2x-π/6)属于[-√3/2,1]
所以f(x)的最小值为2*(-√3/2)=-√3
f(x)=2cosxcos(x-π/6)-√3sin^2x+sinxcosx
=2cosxcos(x-π/6)-2sinx(√3/2sinx-1/2cosx)
=2cosxcos(x-π/6)-2sinx(sinxcosπ/6-cosxsinπ/6)
=2cosxcos(x-π/6)-2sinxsin(x-π/6)
=2cos(x+x-π/6)
=2cos(2x-π/6)
(1)f(x)的最小正周期T=2π/w=2π/2=π
(2)当x属于[0,π/2] 时,2x-π/6属于[-π/6,5π/6]
所以cos(2x-π/6)属于[-√3/2,1]
所以f(x)的最小值为2*(-√3/2)=-√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询