一道积分的题目
展开全部
说明:看不清楚,意思好像是求“∫2xdx/(x²+x+1)²”,对吧?解法如下。
解:原式=∫(2x+1-1)dx/(x²+x+1)²
=∫d(x²+x+1)/(x²+x+1)²-∫dx/(x²+x+1)²
=-1/(x²+x+1)-∫dx/[(x+1/2)²+3/4]²
设x+1/2=(√3/2)tant,则dx=(√3/2)sec²tdt,t=arctan[(2x+1)/√3],sin(2t)=√3(2x+1)/(x²+x+1)
∴原式=-1/(x²+x+1)-∫(√3/2)sec²tdt/[(3/4)sec²t]²
=-1/(x²+x+1)-(8√3/9)∫cos²tdt
=-1/(x²+x+1)-(4√3/9)∫[1+cos(2t)]dt
=-1/(x²+x+1)-(2√3/9)[2t+sin(2t)]+C (C是积分常数)
=-1/(x²+x+1)-(2√3/9){2arctan[(2x+1)/√3]+√3(2x+1)/(x²+x+1)}+C
=-(4x+5)/[3(x²+x+1)]-(4√3/9)arctan[(2x+1)/√3]+C。
解:原式=∫(2x+1-1)dx/(x²+x+1)²
=∫d(x²+x+1)/(x²+x+1)²-∫dx/(x²+x+1)²
=-1/(x²+x+1)-∫dx/[(x+1/2)²+3/4]²
设x+1/2=(√3/2)tant,则dx=(√3/2)sec²tdt,t=arctan[(2x+1)/√3],sin(2t)=√3(2x+1)/(x²+x+1)
∴原式=-1/(x²+x+1)-∫(√3/2)sec²tdt/[(3/4)sec²t]²
=-1/(x²+x+1)-(8√3/9)∫cos²tdt
=-1/(x²+x+1)-(4√3/9)∫[1+cos(2t)]dt
=-1/(x²+x+1)-(2√3/9)[2t+sin(2t)]+C (C是积分常数)
=-1/(x²+x+1)-(2√3/9){2arctan[(2x+1)/√3]+√3(2x+1)/(x²+x+1)}+C
=-(4x+5)/[3(x²+x+1)]-(4√3/9)arctan[(2x+1)/√3]+C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询