组合数和排列数的区别是什么啊?
1个回答
展开全部
组合数的性质:
1、互补性质
即从n个不同元素中取出m个元素的组合数=从n个不同元素中取出(n-m)个元素的组合数。例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。规定:C(n,0)=1 C(n,n)=1 C(0,0)=1。
2、组合恒等式
若表示在n个物品中选取m个物品,则如存在下述公式:C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。
组合数和排列数的区别:
从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(m≤n,n,m∈N)元素,这是排列与组合的共同点。
它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同。
而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a,b与b,a是两个不同的排列,但却是同一个组合。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询