傅里叶级数如何推导?
第一步:计算傅里叶系数
根据周期函数的定积分性质,由以下公式计算函数f(x)在任意区间长度为2π的区间上的定积分.一般取为直接定义函数的一个周期区间。常取为[-π, π],即
第二步:以傅里叶系数为系数,写出三角级数
第三步:基于狄利克雷收敛定理判定傅里叶级数的收敛性
狄利克雷收敛定理:如果周期为2π的周期函数f(x)在一个周期上分段连续,并且在一个周期上只有有限个极值点和有限个第一类间断点,则函数f(x)的傅立叶级数收敛,并且有
期函数f(x)在一个周期上分段连续,并且在一个周期上只有有限个极值点和有限个第一类间断点,则函数f(x)的傅立叶级数收敛,并且有
其中f(x+0)和f(x-0)分别为函数f(x)在点x处的右极限与左极限.即在连续点处傅里叶级数收敛于函数本身S(x)=f(x);在间断点处收敛于该点左、右极限的算术平均值.
第四步:函数展开成傅里叶级数
依据定理得到和函数等于被展开函数f(x)的集合I,最终写出附带集合I的等式
注意点:
傅立叶级数的部分和有很好的整体逼近性质,幂级数的局部逼近性质比较好.幂级数展开需要函数有很好的“光滑性”,傅里叶级数对“光滑性”的要求较低。
如果函数为奇函数,则函数的傅里叶级数仅仅包含正弦项,则这样傅里叶级数称之为正弦级数,此时只需要计算傅里叶级数的系数bn(1,2,…);如果函数为偶函数,则函数的傅里叶级数仅仅包含余弦项和常数项,则这样傅里叶级数称之为余弦级数,此时只需要计算傅里叶级数系数an(0,1,2,…)。
以上资料参考百度百科-傅里叶级数