如何利用不定积分计算定积分?
1个回答
展开全部
e^x=1+x/1!+x^2/2!+...x^n/n!....
a^x=e^(xlna)
将xlna代入上式中的x即可
原式=e^xlna=1+xlna/1!+x^2/2!+...x^n/n!....
每项比前项的比值较小,部分和也就增加较少而较倾向于有界,因此正项级数又有比值判别法。事实上,这都在于断定un的大小数量级。
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询