反常积分∫ 0到正无穷大dx/(1+x+x^2)的敛散性
1个回答
展开全部
答:
∫dx/(1+x+x^2)
=∫ dx/[(x+1/2)^2+3/4]
=4/3∫dx/[(2x+1)/√3)^2+1]
=2/√3∫d[(2x+1)/√3]/[(2x+1)/√3)^2+1]
=2/√3arctan[(2x+1)/√3]
所以反常积分∫(0到+∞)dx/(1+x+x^2)
=limβ→+∞ 2/√3arctan[(2β+1)/√3] - 2/√3arctan(1/√3)
=π/2*2/√3-π/6*2/√3
=2√3π/9
所以反常积分收敛。
∫dx/(1+x+x^2)
=∫ dx/[(x+1/2)^2+3/4]
=4/3∫dx/[(2x+1)/√3)^2+1]
=2/√3∫d[(2x+1)/√3]/[(2x+1)/√3)^2+1]
=2/√3arctan[(2x+1)/√3]
所以反常积分∫(0到+∞)dx/(1+x+x^2)
=limβ→+∞ 2/√3arctan[(2β+1)/√3] - 2/√3arctan(1/√3)
=π/2*2/√3-π/6*2/√3
=2√3π/9
所以反常积分收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询