反常积分∫ 0到正无穷大dx/(1+x+x^2)的敛散性

珠海CYY
2011-01-05 · TA获得超过1.1万个赞
知道大有可为答主
回答量:2545
采纳率:100%
帮助的人:1618万
展开全部
答:
∫dx/(1+x+x^2)
=∫ dx/[(x+1/2)^2+3/4]
=4/3∫dx/[(2x+1)/√3)^2+1]
=2/√3∫d[(2x+1)/√3]/[(2x+1)/√3)^2+1]
=2/√3arctan[(2x+1)/√3]
所以反常积分∫(0到+∞)dx/(1+x+x^2)
=limβ→+∞ 2/√3arctan[(2β+1)/√3] - 2/√3arctan(1/√3)
=π/2*2/√3-π/6*2/√3
=2√3π/9
所以反常积分收敛。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式