已知tan2θ=-2根号2,π/4<θ<π/2.求(2cos²θ/2-sinθ-1)/[根号2sin(π/4+θ)]
1个回答
展开全部
解:因为 派/2<2θ<派
所以 sec2θ=1/cos2θ<0
[2cos(θ/2)^2-sinθ-1]/[根号2*sin(π/4+θ)]
=[(2cos(θ/2)^2-1)-sinθ]/[1/2sinθ+1/2cosθ]
=2(cosθ-sinθ)/(cosθ+sinθ)
=2(cosθ-sinθ)^2/[(cosθ)^2-(sinθ)^2]
=2[(cosθ)^2+(sinθ)^2-2cosθsinθ]/cos2θ
=2(1+sin2θ)/cos2θ
=2/cos2θ+2tan2θ
=2sec2θ-4倍根号2
=-2根号[1+(tan2θ)^2]-4倍根号2
=-2根号[1+32]-4倍根号2
=-2根号33-4倍根号2
所以 sec2θ=1/cos2θ<0
[2cos(θ/2)^2-sinθ-1]/[根号2*sin(π/4+θ)]
=[(2cos(θ/2)^2-1)-sinθ]/[1/2sinθ+1/2cosθ]
=2(cosθ-sinθ)/(cosθ+sinθ)
=2(cosθ-sinθ)^2/[(cosθ)^2-(sinθ)^2]
=2[(cosθ)^2+(sinθ)^2-2cosθsinθ]/cos2θ
=2(1+sin2θ)/cos2θ
=2/cos2θ+2tan2θ
=2sec2θ-4倍根号2
=-2根号[1+(tan2θ)^2]-4倍根号2
=-2根号[1+32]-4倍根号2
=-2根号33-4倍根号2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询