几道初二几何题,大家帮帮忙,谢谢!

1.已知在三角形ABC中∠A是钝角,∠B=2∠C,AD垂直于BC,交BC于点D,求证:BC=2BD+AB2.已知三角形ABC为等腰三角形,由点A引BC边的高恰好等于BC边... 1.已知在三角形ABC中∠A是钝角,∠B=2∠C,AD垂直于BC,交BC于点D,求证:BC=2BD+AB
2.已知三角形ABC为等腰三角形,由点A引BC边的高恰好等于BC边长的一半,求∠BAC的值.
3.三角形ABC是等边三角形,P是三角形ABC内的一点,且PA=4,PB=3,PC=5.求∠APB的度数.

(注:以上题目均无图)
展开
xiejindong
2007-03-02 · 超过15用户采纳过TA的回答
知道答主
回答量:61
采纳率:0%
帮助的人:50万
展开全部
1.证明:在 CD 上做一点 E,连接 AE 使 AE=AB
所以三角形ADB与三角形ADE全等
所以 DB=DE BE=2BD ∠AED=∠B
因为∠ AED=∠B=2∠C 所以∠C=∠CAE
所以 AB=AE=CE 因为 BC=CE+BE
所以 BC=2BD+AB
2.解:设 AD 为 BC 的高,交 BC 于点 D
因为 BC=2AD 则 BD=AD=CD
所以 ∠BAC=∠B +∠C 又因 ∠BAC+∠B +∠C=180度
所以 2∠BAC=180度 所以 ∠BAC=90度
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式