高一等差等比数列的证明
1.数列{an}满足an=1,若bn等于an-2,求bn为等比数列求an通项2.数列{an}中,a1=2,a(n+1)=3/2an+1,求an呃呃呃,是a1=1,不好意思...
1.数列{an}满足an=1,
若bn等于an-2,求bn为等比数列
求an通项
2.数列{an}中,a1=2,a(n+1)=3/2an+1,求an
呃呃呃,是a1=1,不好意思啊 展开
若bn等于an-2,求bn为等比数列
求an通项
2.数列{an}中,a1=2,a(n+1)=3/2an+1,求an
呃呃呃,是a1=1,不好意思啊 展开
展开全部
1.设bn等比为q,
b1=a1-2=-1
bn=-q^(n-1)
==>an=bn+2=2-q^(n-1)
2.a(n+1)=3/2an+1
令a(n+1)+t=3/2(an+t)
==>a(n+1)=3/2an+t/2
==>t=2
==>a(n+1)+2=3/2(an+2)
令bn=an+2,b1=a1+2=4
==>b(n+1)=3/2bn
==>bn是以4为首项,公比为3/2的等比数列
==>bn=4*(3/2)^(n-1)
==>an=bn-2=4*(3/2)^(n-1)-2
b1=a1-2=-1
bn=-q^(n-1)
==>an=bn+2=2-q^(n-1)
2.a(n+1)=3/2an+1
令a(n+1)+t=3/2(an+t)
==>a(n+1)=3/2an+t/2
==>t=2
==>a(n+1)+2=3/2(an+2)
令bn=an+2,b1=a1+2=4
==>b(n+1)=3/2bn
==>bn是以4为首项,公比为3/2的等比数列
==>bn=4*(3/2)^(n-1)
==>an=bn-2=4*(3/2)^(n-1)-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询