
请高等数学高手回答 满意可追加分数 !!!!!!!!!!!!
请阐述下可微可积可导连续性之间的关系今晚10点30前解决!!谢谢可无限追加分数一元函数和二元函数都解释下...
请阐述下 可微 可积 可导 连续性 之间的关系 今晚10点30前解决 !! 谢谢 可无限追加分数
一元函数 和 二元函数 都解释下 展开
一元函数 和 二元函数 都解释下 展开
4个回答
展开全部
可微是指自变量增量\Delta x趋于0时,对应函数的增量\Delta y可以写成A*\Delta x+\Delta x的高阶无穷小,把其中线性的部分称为函数的微分。在一元函数中,可微和可导是等价的。
可积是可以求积分的意思,连续函数一定可以求不定积分,分段连续函数或者只含有有限个第一类间断点的函数可以求定积分,即达布和存在。当然不定积分能否用初等函数写出来就不一定了。
可导是指导数存在,即增量比值的极限是否存在。
连续指的是当自变量增量趋于0时,对应函数的增量也趋于0;体现在图形上是“不断”的,如果画图时不得不提起笔来,即“间断”的。
对一元函数,可导等价于可微,可微必连续,连续不一定可微,连续一定可积,可积不一定连续。
总结:这几个概念是高等数学或者说微积分中非常基本的概念,理解起来挺难,如果想弄清楚的话,第一位就要理解极限,第二位是要理解什么是无穷小,无穷小有什么用。
可积是可以求积分的意思,连续函数一定可以求不定积分,分段连续函数或者只含有有限个第一类间断点的函数可以求定积分,即达布和存在。当然不定积分能否用初等函数写出来就不一定了。
可导是指导数存在,即增量比值的极限是否存在。
连续指的是当自变量增量趋于0时,对应函数的增量也趋于0;体现在图形上是“不断”的,如果画图时不得不提起笔来,即“间断”的。
对一元函数,可导等价于可微,可微必连续,连续不一定可微,连续一定可积,可积不一定连续。
总结:这几个概念是高等数学或者说微积分中非常基本的概念,理解起来挺难,如果想弄清楚的话,第一位就要理解极限,第二位是要理解什么是无穷小,无穷小有什么用。
展开全部
偏导数连续——>可微分——>连续——>极限存在
|
\/
偏导数存在
其他反向就都不可以了。但愿这个竖着的箭头不偏移。就是可谓分可以推得偏导数存在
|
\/
偏导数存在
其他反向就都不可以了。但愿这个竖着的箭头不偏移。就是可谓分可以推得偏导数存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可微<=>可导=>连续
可积=>有界函数
可积=>有界函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可导必连续,连续不一定可导。
连续函数必可积。
可导必可微,可微必可导。
连续函数必可积。
可导必可微,可微必可导。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询