高中希望杯数学竞赛的试题 要答案一起的哈,嗯越多越好!
展开全部
一、选择题(本题满分36分,每小题6分)
1.函数 在 上的最小值是 ( C )
A.0 B.1 C.2 D.3
[解] 当 时, ,因此
,当且仅当 时上式取等号.而此方程有解 ,因此 在 上的最小值为2.
2.设 , ,若 ,则实数 的取值范围为 ( D )
A. B. C. D.
[解] 因 有两个实根
, ,
故 等价于 且 ,即
且 ,
解之得 .
3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为 ,乙在每局中获胜的概率为 ,且各局胜负相互独立,则比赛停止时已打局数 的期望 为 ( B )
A. B. C. D.
[解法一] 依题意知, 的所有可能值为2,4,6.
设每两局比赛为一轮,则该轮结束时比赛停止的概率为
.
若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有
,
,
,
故 .
[解法二] 依题意知, 的所有可能值为2,4,6.
令 表示甲在第 局比赛中获胜,则 表示乙在第 局比赛中获胜.
由独立性与互不相容性得
,
,
,
故 .
4.若三个棱长均为整数(单位:cm)的正方体的表面积之和为564 cm2,则这三个正方体的体积之和为 ( A )
A. 764 cm3或586 cm3 B. 764 cm3
C. 586 cm3或564 cm3 D. 586 cm3
[解] 设这三个正方体的棱长分别为 ,则有 , ,不妨设 ,从而 , .故 . 只能取9,8,7,6.
若 ,则 ,易知 , ,得一组解 .
若 ,则 , .但 , ,从而 或5.若 ,则 无解,若 ,则 无解.此时无解.
若 ,则 ,有唯一解 , .
若 ,则 ,此时 , .故 ,但 ,故 ,此时 无解.
综上,共有两组解 或
体积为 cm3或 cm3.
5.方程组 的有理数解 的个数为 ( B )
A. 1 B. 2 C. 3 D. 4
[解] 若 ,则 解得 或
若 ,则由 得 . ①
由 得 . ②
将②代入 得 . ③
由①得 ,代入③化简得 .
易知 无有理数根,故 ,由①得 ,由②得 ,与 矛盾,故该方程组共有两组有理数解 或
6.设 的内角 所对的边 成等比数列,则 的取值范围是
( C )
A. B.
C. D.
[解] 设 的公比为 ,则 ,而
.
因此,只需求 的取值范围.
因 成等比数列,最大边只能是 或 ,因此 要构成三角形的三边,必需且只需 且 .即有不等式组
即
解得
从而 ,因此所求的取值范围是 .
二、填空题(本题满分54分,每小题9分)
7.设 ,其中 为实数, , , ,若 ,则 5 .
[解] 由题意知
,
由 得 , ,因此 , , .
8.设 的最小值为 ,则 .
[解]
,
(1) 时, 当 时取最小值 ;
(2) 时, 当 时取最小值1;
(3) 时, 当 时取最小值 .
又 或 时, 的最小值不能为 ,
故 ,解得 , (舍去).
9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.
[解法一] 用4条棍子间的空隙代表3个学校,而用 表示名额.如
表示第一、二、三个学校分别有4,18,2个名额.
若把每个“ ”与每个“ ”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于 个位置(两端不在内)被2个“|”占领的一种“占位法”.
“每校至少有一个名额的分法”相当于在24个“ ”之间的23个空隙中选出2个空隙插入“|”,故有 种.
又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.
综上知,满足条件的分配方法共有253-31=222种.
[解法二] 设分配给3个学校的名额数分别为 ,则每校至少有一个名额的分法数为不定方程
.
的正整数解的个数,即方程 的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:
.
又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.
综上知,满足条件的分配方法共有253-31=222种.
10.设数列 的前 项和 满足: , ,则通项 = .
[解] ,
即 2
= ,
由此得 2 .
令 , ( ),
有 ,故 ,所以 .
11.设 是定义在 上的函数,若 ,且对任意 ,满足
, ,则 = .
[解法一] 由题设条件知
,
因此有 ,故
.
[解法二] 令 ,则
,
,
即 ,
故 ,
得 是周期为2的周期函数,
所以 .
12.一个半径为1的小球在一个内壁棱长为 的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 .
[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为 ,作平面 //平面 ,与小球相切于点 ,则小球球心 为正四面体 的中心, ,垂足 为 的中心.
因
,
故 ,从而 .
记此时小球与面 的切点为 ,连接 ,则
.
考虑小球与正四面体的一个面(不妨取为 )相切时的情况,易知小球在面 上最靠近边的切点的轨迹仍为正三角形,记为 ,如答12图2.记正四面体
的棱长为 ,过 作 于 .
因 ,有 ,故小三角形的边长 .
小球与面 不能接触到的部分的面积为(如答12图2中阴影部分)
.
又 , ,所以
.
由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为 .
三、解答题(本题满分60分,每小题20分)
13.已知函数 的图像与直线 有且仅有三个交点,交点的横坐标的最大值为 ,求证:
.
[证] 的图象与直线 的三个交点如答13图所示,且在 内相切,其切点为 , .
…5分
由于 , ,所以 ,即 . …10分
因此
…15分
. …20分
14.解不等式
.
[解法一] 由 ,且 在 上为增函数,故原不等式等价于
.
即 . …5分
分组分解
,
, …10分
所以 ,
. …15分
所以 ,即 或 .
故原不等式解集为 . …20分
[解法二] 由 ,且 在 上为增函数,故原不等式等价于
. …5分
即
,
, …10分
令 ,则不等式为
,
显然 在 上为增函数,由此上面不等式等价于
, …15分
即 ,解得 ( 舍去),
故原不等式解集为 . …20分
15.如题15图, 是抛物线 上的动点,点 在 轴上,圆 内切于 ,求 面积的最小值.
[解] 设 ,不妨设 .
直线 的方程: ,
化简得 .
又圆心 到 的距离为1,
, …5分
故 ,
易知 ,上式化简得 ,
同理有 . …10分
所以 , ,则
.
因 是抛物线上的点,有 ,则
, . …15分
所以
.
当 时,上式取等号,此时 .
因此 的最小值为8.
1.函数 在 上的最小值是 ( C )
A.0 B.1 C.2 D.3
[解] 当 时, ,因此
,当且仅当 时上式取等号.而此方程有解 ,因此 在 上的最小值为2.
2.设 , ,若 ,则实数 的取值范围为 ( D )
A. B. C. D.
[解] 因 有两个实根
, ,
故 等价于 且 ,即
且 ,
解之得 .
3.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为 ,乙在每局中获胜的概率为 ,且各局胜负相互独立,则比赛停止时已打局数 的期望 为 ( B )
A. B. C. D.
[解法一] 依题意知, 的所有可能值为2,4,6.
设每两局比赛为一轮,则该轮结束时比赛停止的概率为
.
若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有
,
,
,
故 .
[解法二] 依题意知, 的所有可能值为2,4,6.
令 表示甲在第 局比赛中获胜,则 表示乙在第 局比赛中获胜.
由独立性与互不相容性得
,
,
,
故 .
4.若三个棱长均为整数(单位:cm)的正方体的表面积之和为564 cm2,则这三个正方体的体积之和为 ( A )
A. 764 cm3或586 cm3 B. 764 cm3
C. 586 cm3或564 cm3 D. 586 cm3
[解] 设这三个正方体的棱长分别为 ,则有 , ,不妨设 ,从而 , .故 . 只能取9,8,7,6.
若 ,则 ,易知 , ,得一组解 .
若 ,则 , .但 , ,从而 或5.若 ,则 无解,若 ,则 无解.此时无解.
若 ,则 ,有唯一解 , .
若 ,则 ,此时 , .故 ,但 ,故 ,此时 无解.
综上,共有两组解 或
体积为 cm3或 cm3.
5.方程组 的有理数解 的个数为 ( B )
A. 1 B. 2 C. 3 D. 4
[解] 若 ,则 解得 或
若 ,则由 得 . ①
由 得 . ②
将②代入 得 . ③
由①得 ,代入③化简得 .
易知 无有理数根,故 ,由①得 ,由②得 ,与 矛盾,故该方程组共有两组有理数解 或
6.设 的内角 所对的边 成等比数列,则 的取值范围是
( C )
A. B.
C. D.
[解] 设 的公比为 ,则 ,而
.
因此,只需求 的取值范围.
因 成等比数列,最大边只能是 或 ,因此 要构成三角形的三边,必需且只需 且 .即有不等式组
即
解得
从而 ,因此所求的取值范围是 .
二、填空题(本题满分54分,每小题9分)
7.设 ,其中 为实数, , , ,若 ,则 5 .
[解] 由题意知
,
由 得 , ,因此 , , .
8.设 的最小值为 ,则 .
[解]
,
(1) 时, 当 时取最小值 ;
(2) 时, 当 时取最小值1;
(3) 时, 当 时取最小值 .
又 或 时, 的最小值不能为 ,
故 ,解得 , (舍去).
9.将24个志愿者名额分配给3个学校,则每校至少有一个名额且各校名额互不相同的分配方法共有 222 种.
[解法一] 用4条棍子间的空隙代表3个学校,而用 表示名额.如
表示第一、二、三个学校分别有4,18,2个名额.
若把每个“ ”与每个“ ”都视为一个位置,由于左右两端必须是“|”,故不同的分配方法相当于 个位置(两端不在内)被2个“|”占领的一种“占位法”.
“每校至少有一个名额的分法”相当于在24个“ ”之间的23个空隙中选出2个空隙插入“|”,故有 种.
又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.
综上知,满足条件的分配方法共有253-31=222种.
[解法二] 设分配给3个学校的名额数分别为 ,则每校至少有一个名额的分法数为不定方程
.
的正整数解的个数,即方程 的非负整数解的个数,它等于3个不同元素中取21个元素的可重组合:
.
又在“每校至少有一个名额的分法”中“至少有两个学校的名额数相同”的分配方法有31种.
综上知,满足条件的分配方法共有253-31=222种.
10.设数列 的前 项和 满足: , ,则通项 = .
[解] ,
即 2
= ,
由此得 2 .
令 , ( ),
有 ,故 ,所以 .
11.设 是定义在 上的函数,若 ,且对任意 ,满足
, ,则 = .
[解法一] 由题设条件知
,
因此有 ,故
.
[解法二] 令 ,则
,
,
即 ,
故 ,
得 是周期为2的周期函数,
所以 .
12.一个半径为1的小球在一个内壁棱长为 的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 .
[解] 如答12图1,考虑小球挤在一个角时的情况,记小球半径为 ,作平面 //平面 ,与小球相切于点 ,则小球球心 为正四面体 的中心, ,垂足 为 的中心.
因
,
故 ,从而 .
记此时小球与面 的切点为 ,连接 ,则
.
考虑小球与正四面体的一个面(不妨取为 )相切时的情况,易知小球在面 上最靠近边的切点的轨迹仍为正三角形,记为 ,如答12图2.记正四面体
的棱长为 ,过 作 于 .
因 ,有 ,故小三角形的边长 .
小球与面 不能接触到的部分的面积为(如答12图2中阴影部分)
.
又 , ,所以
.
由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为 .
三、解答题(本题满分60分,每小题20分)
13.已知函数 的图像与直线 有且仅有三个交点,交点的横坐标的最大值为 ,求证:
.
[证] 的图象与直线 的三个交点如答13图所示,且在 内相切,其切点为 , .
…5分
由于 , ,所以 ,即 . …10分
因此
…15分
. …20分
14.解不等式
.
[解法一] 由 ,且 在 上为增函数,故原不等式等价于
.
即 . …5分
分组分解
,
, …10分
所以 ,
. …15分
所以 ,即 或 .
故原不等式解集为 . …20分
[解法二] 由 ,且 在 上为增函数,故原不等式等价于
. …5分
即
,
, …10分
令 ,则不等式为
,
显然 在 上为增函数,由此上面不等式等价于
, …15分
即 ,解得 ( 舍去),
故原不等式解集为 . …20分
15.如题15图, 是抛物线 上的动点,点 在 轴上,圆 内切于 ,求 面积的最小值.
[解] 设 ,不妨设 .
直线 的方程: ,
化简得 .
又圆心 到 的距离为1,
, …5分
故 ,
易知 ,上式化简得 ,
同理有 . …10分
所以 , ,则
.
因 是抛物线上的点,有 ,则
, . …15分
所以
.
当 时,上式取等号,此时 .
因此 的最小值为8.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询