y''+y'-2y=0求微分方程通解

 我来答
颜代7W
高粉答主

2019-10-10 · 每个回答都超有意思的
知道小有建树答主
回答量:505
采纳率:100%
帮助的人:11.9万
展开全部

微分方程y″-y′-2y=0的通解为y=C1*e^(2x)+C2*e^(-x)+C。

解:根据微分方程特性,可通过求特征方程的解来求微分方程的通解。

微分方程y″-y′-2y=0的特征方程为r^2-r-2=0,

可求得,r1=2,r2=-1。

而r1≠r2。

那么微分方程y″-y′-2y=0的通解为,

y=C1*e^(2x)+C2*e^(-x)+C(其中C1、C2与C为任意实数)。

扩展资料:

微分方程的解

1、一阶线性常微分方程的解

对于一阶线性常微分方程y'+p(x)y+q(x)=0,可知其通解为y=C(x)*e^(-∫p(x)dx)。然后将这个通解代回到原式中,即可求出C(x)的值。

2、二阶常系数齐次常微分方程的解

对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解。

对于二阶常系数齐次常微分方程y''+py'+qy=0,可求得其通解为y=c1y1+c2y2。

然后可通过其特征方程r^2+pr+q=0来求解二阶常系数齐次常微分方程的通解。

(1)当r1=r2,则有y=(C1+C2*x)e^(rx),

(2)当r1≠r2,则有y=C1*e^(r1x)+C2*x*e^(r2x)

(3)在共轭复数根的情况下,y=e^(αx)*(C1*cos(βx)+C2*sin(βx))

参考资料来源:百度百科-微分方程

茹翊神谕者

2021-02-09 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25120

向TA提问 私信TA
展开全部

直接用书上的结论即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式