当x趋近于0 lim(1-x)^(1/x)
4个回答
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
2011-01-07
展开全部
应用第二个重要极限,
令x=-1/t,则当x→0时,t→∞,
原式=lim(1+t)^(-t)=1/[lim(1+t)^(t)]=1/e
令x=-1/t,则当x→0时,t→∞,
原式=lim(1+t)^(-t)=1/[lim(1+t)^(t)]=1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:依题意 设x=-t 则x趋近于0变成t趋近于0 以下推导过程t趋近于0就省略不写了
原式=lim(1+t)^(-1/t)=lim[(1+t)^(1/t)]^(-1)=[lim(1+t)^(1/t)]^(-1)
因为lim(1+t)^(1/t)当t趋近于0时 极限值=e。(这是一个重要极限,要背的,你们应该学了吧,如果没学可以再问我哈,我再告诉你详细的推导过程)
所以原式=e^(-1)=1/e
最好是在纸上写一遍,这样比较看的懂,如果有不懂的就再问我吧^_^
原式=lim(1+t)^(-1/t)=lim[(1+t)^(1/t)]^(-1)=[lim(1+t)^(1/t)]^(-1)
因为lim(1+t)^(1/t)当t趋近于0时 极限值=e。(这是一个重要极限,要背的,你们应该学了吧,如果没学可以再问我哈,我再告诉你详细的推导过程)
所以原式=e^(-1)=1/e
最好是在纸上写一遍,这样比较看的懂,如果有不懂的就再问我吧^_^
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:当x趋近于0 lim(1-x)^(1/x) =当x趋近于0 lim{[1+(-x)]^[1/(-x) ]}^(-1)=e^(-1)=1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询