关于函数的连续可导问题:设|f(x)|在x=a处可导,且f(a)=0,则f(x)在x=a处()
设|f(x)|在x=a处可导,且f(a)=0,则f(x)在x=a处()A不连续B连续不可导C可导但f'(a)≠0D可导且f'(a)=o...
设|f(x)|在x=a处可导,且f(a)=0,则f(x)在x=a处() A不连续 B连续不可导 C可导但f'(a)≠0 D可导且f'(a)=o
展开
展开全部
选D
因为|f(x)-f(a)|=|f(x)|,|f(x)|在x=a处连续
当x→a时,右端趋于|f(a)|=0,所以f(x)在x=a处连续
|f(x)|在x=a处可导,而且函数取得极小值0,所以|f(x)|在x=a出的导数值为0
|f(x)-f(a)|/|x-a| = ||f(x)|-|f(a)|/(x-a)|,右端在x→a时趋于|f(x)|在x=a出导数的绝对值
所以x→a时上式左端极限为0
所以x→a时[f(x)-f(a)]/(x-a)趋于0,即f'(a)=0
因为|f(x)-f(a)|=|f(x)|,|f(x)|在x=a处连续
当x→a时,右端趋于|f(a)|=0,所以f(x)在x=a处连续
|f(x)|在x=a处可导,而且函数取得极小值0,所以|f(x)|在x=a出的导数值为0
|f(x)-f(a)|/|x-a| = ||f(x)|-|f(a)|/(x-a)|,右端在x→a时趋于|f(x)|在x=a出导数的绝对值
所以x→a时上式左端极限为0
所以x→a时[f(x)-f(a)]/(x-a)趋于0,即f'(a)=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询