
cos(α+β)=cosαcosβ+sinαsinβ的证明过程
2个回答
展开全部
你的题目已出错。应该是异号。
用向量法可证明。
假设单位圆上有一个点A,它所表示的向量为(cosα,sinα),还有一个点B,表示的向量为(cosβ,sinβ),α和β为它们的夹角。
由向量坐标运算,OA向量与OB向量数量积为cosαcosβ+sinαsinβ
再由向量数量积定义,等于两个向量的模乘以cos夹角,单位圆上模是1,夹角是而所以cos(α-β)=cos(β-α),cos(α-β)=cosαcosβ+sinαsinβ
用向量法可证明。
假设单位圆上有一个点A,它所表示的向量为(cosα,sinα),还有一个点B,表示的向量为(cosβ,sinβ),α和β为它们的夹角。
由向量坐标运算,OA向量与OB向量数量积为cosαcosβ+sinαsinβ
再由向量数量积定义,等于两个向量的模乘以cos夹角,单位圆上模是1,夹角是而所以cos(α-β)=cos(β-α),cos(α-β)=cosαcosβ+sinαsinβ
参考资料: 咱老师说的
展开全部
题设不成立
应该是cos(α+β)=cosαcosβ-sinαsinβ
设α,β是锐角,作直径AB=1的圆O,C,D是位于AB两侧的圆周上的两点,连结CD,由托勒密定理有
CD•AB=BC•AD+AC•BD. (*)
(1)设∠CAB=α,∠DAB=β(如图1),则AC=cosα,BC=sinαAD=cosβ,BD=sinβ,CD=sin(α+β),代入(*)得
sin(α+β)=sinαcosβ+cosαsinβ,(1)(2)设∠CAB=α,∠DBA=β,α≥β,AC=cosα,BC=sinα,AD=sinβ,BD=cosβ,CD=cos(α-β),
代入(*)得
cos(α-β)=cosαcosβ+sinαsinβ,(2)
由诱导公式易见(1),(2)对任意角α,β都成立,若用-β替换(1),(2)中的β,则可得
sin(α-β)=sinαcosβ-cosαsinβ,(3)
cos(α+β)=cosαcosβ-sinαsinβ.(4)
应该是cos(α+β)=cosαcosβ-sinαsinβ
设α,β是锐角,作直径AB=1的圆O,C,D是位于AB两侧的圆周上的两点,连结CD,由托勒密定理有
CD•AB=BC•AD+AC•BD. (*)
(1)设∠CAB=α,∠DAB=β(如图1),则AC=cosα,BC=sinαAD=cosβ,BD=sinβ,CD=sin(α+β),代入(*)得
sin(α+β)=sinαcosβ+cosαsinβ,(1)(2)设∠CAB=α,∠DBA=β,α≥β,AC=cosα,BC=sinα,AD=sinβ,BD=cosβ,CD=cos(α-β),
代入(*)得
cos(α-β)=cosαcosβ+sinαsinβ,(2)
由诱导公式易见(1),(2)对任意角α,β都成立,若用-β替换(1),(2)中的β,则可得
sin(α-β)=sinαcosβ-cosαsinβ,(3)
cos(α+β)=cosαcosβ-sinαsinβ.(4)
参考资料: http://zhidao.baidu.com/question/108585453.html?si=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询