高中数列,求高人解答!

已知各项均为正数的数列{an}满足a1=3,[2a(n+1)-an]/[2an-a(n+1)]=an*a(n+1)。(1)求证:数列{an-1/an}是一个等比数列(此问... 已知各项均为正数的数列{an}满足a1=3,[2a(n+1)-an]/[2an-a(n+1)]=an*a(n+1)。
(1)求证:数列{an-1/an}是一个等比数列(此问我已经做出来了)
(2)求数列{an}的通项公式
(3)设Sn=a1^2+a2^2+......an^2,Tn=1/a1^2+1/a2^2+......1/an^2,试求Sn+Tn,并确定最小的n使Sn+Tn为整数
求(2)(3)过程及正确答案!
展开
yx208
2011-01-08 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2365
采纳率:66%
帮助的人:2011万
展开全部
[2a(n+1)-an]/[2an-a(n+1)]=an*a(n+1)
左右同除以an*a(n+1)再去分母:
2/an-1/a(n+1)=2an-a(n+1)
移项:a(n+1)-1/a(n+1)=2(an-1/an)
∴数列{an-1/an}是一个等比数列,公比q=2
首项=a1-1/a1=8/3

(2)an-1/an=(a1-1/a1)·q^(n-1)=4/3·2^n
左边去分母并移项:3an²-2^(n+2)·an-3=0
解关于an的二元一次方程(注意an>0):
an={ 2^(n+1)+√[4^(n+1)+9] }/3 (n=1时代入验证,a1=3成立)

(3)由于an-1/an=4/3·2^n
两边平方:an²-2+1/an²=16/9·4^n
∴an²+1/an²=16/9·4^n +2
∴Sn+Tn
=(a1²+1/a1²)+(a2²+1/a2²)+(a3²+1/a3²)+……+(an²+1/an²)
=2n+16/9·[4+4^2+4^3+……+4^n]
=2n+64/27·(4^n-1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式