已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0),左右焦点分别为F1、F2,焦距为4,点

M是椭圆C上一点,满足∠F1MF2=60°,且S△F1MF2=4/3√3(1)求椭圆C的方程(2)过点P(0,2)分别作直线PA、PB交椭圆C于A、B两点,设PA、PB的... M是椭圆C上一点,满足∠F1MF2=60°,且S△F1MF2=4/3√3
(1) 求椭圆C的方程
(2) 过点P(0,2)分别作直线PA、PB交椭圆C于A、B两点,设PA、PB的斜率分别是k1,k2,且k1+k2=4,求证:直线AB过定点,并求出直线AB的斜率k的取值范围.
问题补充
展开
 我来答
汤旭杰律师
2014-01-17 · 律师
汤旭杰律师
采纳数:135 获赞数:48527

向TA提问 私信TA
展开全部
解:设F1(-c,0)F2(c,0)
则l的方程为y=√3x-√3c

F1到直线l的距离为2√3
c=2
y=√3x-2√3 x=1/√3y+2 代入椭圆方程 b^2x^2+a^2y^2-a^2b^2=0中
得(b^2/3+a^2)y^2+4b^2/√3y+(4-a^2)b^2=0
AF2=2F2B |y1|与|y2|之间时两倍的关系
y1=[-4b^2/√3+√[16b^4/3-4(b^2/3+a^2)*(4-a^2)b^2]/2(b^2/3+a^2)
y2=[-4b^2/√3-√[16b^4/3-4(b^2/3+a^2)*(4-a^2)b^2]/2(b^2/3+a^2)
设 2|y1|=|y2|
4√3b^2=√[16b^4/3-4(b^2/3+a^2)*(4-a^2)b^2] c=2
12b^2=4b^2/3-(b^2/3+a^2)*(4-a^2) a^2=4+b^2
12b^2=4b^2/3+(b^2/3+b^2+4)*b^2
解得b^2=5
a^2=9
椭圆C的方程 x^2/9+y^2/5=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式