已知f1f2分别为椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,P为椭圆上一点且向量pf
已知f1f2分别为椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,P为椭圆上一点且向量pf1×向量pf2=c²,...
已知f1f2分别为椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,P为椭圆上一点且向量pf1×向量pf2=c²,求e的范围
展开
1个回答
展开全部
设f1(-c,0)、f2(c,0),P(x,y);则 向量Pf1={-c-x,-y}、Pf2={c-x,-y};
向量Pf●P负f2=(-c-x)*(c-x)+y*y=x²+y²-c²=c²,即 x²+y²=2c²;
点P须在圆心在原点、半径为 c√2 的圆上;参考椭圆图形可知,存在 P点的条件是 b≤c√2≤a;
b²≤2c²≤a²,a²-c²≤2c²≤a²,∴e=c/a≤√(1/2)=√2/2,e≥√(1/3)=√3/3;即 √3/3≤e≤√2/2;
向量Pf●P负f2=(-c-x)*(c-x)+y*y=x²+y²-c²=c²,即 x²+y²=2c²;
点P须在圆心在原点、半径为 c√2 的圆上;参考椭圆图形可知,存在 P点的条件是 b≤c√2≤a;
b²≤2c²≤a²,a²-c²≤2c²≤a²,∴e=c/a≤√(1/2)=√2/2,e≥√(1/3)=√3/3;即 √3/3≤e≤√2/2;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询