已知f1f2分别为椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,P为椭圆上一点且向量pf

已知f1f2分别为椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,P为椭圆上一点且向量pf1×向量pf2=c²,... 已知f1f2分别为椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,P为椭圆上一点且向量pf1×向量pf2=c²,求e的范围 展开
活剥皮背乎3600
2013-11-13 · TA获得超过1万个赞
知道大有可为答主
回答量:3960
采纳率:100%
帮助的人:1600万
展开全部
设f1(-c,0)、f2(c,0),P(x,y);则 向量Pf1={-c-x,-y}、Pf2={c-x,-y};
向量Pf●P负f2=(-c-x)*(c-x)+y*y=x²+y²-c²=c²,即 x²+y²=2c²;
点P须在圆心在原点、半径为 c√2 的圆上;参考椭圆图形可知,存在 P点的条件是 b≤c√2≤a;
b²≤2c²≤a²,a²-c²≤2c²≤a²,∴e=c/a≤√(1/2)=√2/2,e≥√(1/3)=√3/3;即 √3/3≤e≤√2/2;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式