如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE交AC的延长线于点F.
如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE交AC的延长线于点F.(1)求证:DF=EF;2)如果AD=2,∠ADC=60°,AC⊥DC于点...
如图,在平行四边形ABCD中,过点B作BE∥AC,在BG上取点E,连接DE交AC的延长线于点F.
(1)求证:DF=EF;2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长. 展开
(1)求证:DF=EF;2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长. 展开
展开全部
分析:(1)连接BD交AC于点O.由平行四边形的性质可知O为BD中点,又因为BG∥AF,进而证明DF=EF.
(2)利用直角三角形的性质和三角形中位线性质定理以及平行四边形的性质即可求出BE的长.
(1)证明:连接BD交AC于点O.
∵四边形ABCD是平行四边形,
∴OB=OD,
∵BG∥AF,
∴DF=EF.
(2)∵AC⊥DC,∠ADC=60°,AD=2,
∴AC=
根号3.
∵OF是△DBE的中位线,
∴BE=2OF.
∵OF=OC+CF,
∴BE=2OC+2CF.
∵四边形ABCD是平行四边形,
∴AC=2OC.
∵AC=2CF,
∴BE=2AC=2
根号3.
请采纳回答
(2)利用直角三角形的性质和三角形中位线性质定理以及平行四边形的性质即可求出BE的长.
(1)证明:连接BD交AC于点O.
∵四边形ABCD是平行四边形,
∴OB=OD,
∵BG∥AF,
∴DF=EF.
(2)∵AC⊥DC,∠ADC=60°,AD=2,
∴AC=
根号3.
∵OF是△DBE的中位线,
∴BE=2OF.
∵OF=OC+CF,
∴BE=2OC+2CF.
∵四边形ABCD是平行四边形,
∴AC=2OC.
∵AC=2CF,
∴BE=2AC=2
根号3.
请采纳回答
展开全部
(1)证明:连接BD交AC于点O.
∵四边形ABCD是平行四边形,
∴OB=OD,
∵BG∥AF,
∴DF=EF.
(2)∵AC⊥DC,∠ADC=60°,AD=2,
∴AC=根号3.
∵OF是△DBE的中位线,
∴BE=2OF.
∵OF=OC+CF,
∴BE=2OC+2CF.
∵四边形ABCD是平行四边形,
∴AC=2OC.
∵AC=2CF,
∴BE=2AC=2根号3.
看完了采纳哦~~祝学习进步!
∵四边形ABCD是平行四边形,
∴OB=OD,
∵BG∥AF,
∴DF=EF.
(2)∵AC⊥DC,∠ADC=60°,AD=2,
∴AC=根号3.
∵OF是△DBE的中位线,
∴BE=2OF.
∵OF=OC+CF,
∴BE=2OC+2CF.
∵四边形ABCD是平行四边形,
∴AC=2OC.
∵AC=2CF,
∴BE=2AC=2根号3.
看完了采纳哦~~祝学习进步!
追问
为什么BG//AF,DF=EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询