一动圆过定点A(-根号2,0)且与定圆(x-根号2)^2+y^2=12相内切,求动圆圆心C的轨迹M的方程?
过点P(0,2)的直线l与轨迹M交于不同两点E,F,求向量PE点乘向量PF取值范围(主要第二问不会)...
过点P(0,2)的直线l与轨迹M交于不同两点E,F,求向量PE点乘向量PF取值范围 (主要第二问不会)
展开
1个回答
2013-12-16
展开全部
题意得,定圆(X-√2)^2+Y^2=12的圆心B(√2,0),半径2√3,由于点A(-√2,0)与点B的距离2√2小于半径2√3,且根据题意动圆过点A且与定圆相切,所以只能是动圆在定圆中,设动圆的圆心O,点O到点A和点O到点B的距离和等于定圆的半径2√3,那么动圆的方程是
(x^2)/3+b^2=1(即椭圆方程)
(2)设过点P(0,2)直线x=k(y-2)……(1)
椭圆曲线(x^2)/3+b^2=1……(2)
设点E(x1,y1),F(x2,y2)
联立(1)(2)得
(k^2+3)(y^2)-4(k^2)y+(4k^2-3)=0
△=16k^4-4(k^2+3)(4k^2-3)>0,得k^2∈[0,1)
且y1+y2=4k^2/(k^2+3),y1?y2=(4k^2-3)/(k^2+3)
向量PE=(x1,y1-2)=(k(y1-2), y1-2),向量PF=(k(y2-2), y2-2)
PE?PF=(k^2+1)(y1-2)(y2-2)=9(k^2+1)/(k^2+3)
=9-18/(k^2+3)
由于k^2∈[0,1),得9-18/(k^2+3)∈[3,9/2)
即向量PE乘向量PF的取值范围[3,9/2)赞同22|评论(5)
(x^2)/3+b^2=1(即椭圆方程)
(2)设过点P(0,2)直线x=k(y-2)……(1)
椭圆曲线(x^2)/3+b^2=1……(2)
设点E(x1,y1),F(x2,y2)
联立(1)(2)得
(k^2+3)(y^2)-4(k^2)y+(4k^2-3)=0
△=16k^4-4(k^2+3)(4k^2-3)>0,得k^2∈[0,1)
且y1+y2=4k^2/(k^2+3),y1?y2=(4k^2-3)/(k^2+3)
向量PE=(x1,y1-2)=(k(y1-2), y1-2),向量PF=(k(y2-2), y2-2)
PE?PF=(k^2+1)(y1-2)(y2-2)=9(k^2+1)/(k^2+3)
=9-18/(k^2+3)
由于k^2∈[0,1),得9-18/(k^2+3)∈[3,9/2)
即向量PE乘向量PF的取值范围[3,9/2)赞同22|评论(5)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询