回归方程怎么求? 求解步骤是什么
先求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,
然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,
现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,
而 a=y_-bx_=7/2-0.7*9/2=0.35 ,
所以回归直线方程为 y=bx+a=0.7x+0.35 。
扩展资料:
回归方程运算案例:
若在一组具有相关关系的变量的数据(x与键卖Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。
因为模型中有残差,并且残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要保证几乎所有的实测值聚集在一条回归直线上,握拍就需要它们的纵向距离的平方和到那个最好的拟合直线距离最小。
记此直线方程为(如右所示,记为①式)这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是①式叫做Y对x的
回归直线方程,相应的直线叫做回归直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。
回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程的精确度。
回归直线的求法
最小二乘法:
总离差不能用n个离差之和
来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:
参考资料:百度百科——回归方稿皮逗程
2023-07-25 广告
先求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,
然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,
现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,
而 a=y_-bx_=7/2-0.7*9/2=0.35 ,
所以回归直线方程为 y=bx+a=0.7x+0.35 。
扩展资料:
回归直线的求法
最小二乘法:
总离差不能用n个离差之和。
来表示,通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:
由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx2-a)²+······+(yn-bxn-a)²,这样,问题就归结于:当a,b取什么值时Q最小,即到点直线y=bx+a的“整体距离”最小。
回归方程的写法:spss数据表中有非标准系数一栏,这其实就是回归方程的系数。对应的变量就是和系数相乘。如果有常数项,就不用和变量值相乘。
回归直线的原理:
如果散点图中点的分布从整体看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。根据不同的标准,可以磨姿老画出不同的直线来近似表示这种线性相关关系。
回归直线比如可以连接最左侧点和最右侧点得到一条直线,或者让画出的直线瞎升上方的册源点和下方的点数目相等。当所有数据点都分布在一条直线附近,显然这样的直线还可以画出许多条,而我们希望找出其中的一条,它能最好地反映x与Y的关系。
换言之,我们要找出一条直线,使这条直线"最贴近"已知的数据点。记此直线方程为y^=a+bx。这里在y的上方加记号"^"是为了区分Y的实际值y,表示x取值xi(i=1,2,3……,n)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是yi^=a+bxi(i为x右下角的数值)。
y^=a+bx式叫做Y对x的回归直线方程,b叫回归系数。要确定回归直线方程,只要确定a与回归系数b。
参考资料:回归直线_百度百科
y=bx+a=0.7x+0.35
先求 x、y 的平均数衡宴 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 。
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,而 a=y_-bx_=7/2-0.7*9/2=0.35 。
所以回归直线方程为 y=bx+a=0.7x+0.35 。
扩展资料:
回归方程(regression equation)是对变量之间统计关系进行芹拦扰定量描述的一种数学表达式。指具有相关的随机变量和固定变量之间关系的方程。
回归直线方程指在一组具有相关关系的变量的数据(x与y)间,一条最好地反映x与y之间的关系直线。
若在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。
因为模型中有残差,并且残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要保证几乎所有的实测值聚集在一条回归直线上,就需要它们的纵向距离嫌旦的平方和到那个最好的拟合直线距离最小。
记此直线方程为(如右所示,记为①式)这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是①式叫做Y对x的
回归直线方程,相应的直线叫做回归直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。
回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程的精确度。
参考资料:百度百科——回归方程
先求 x、y 的平均数 x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2,
然后求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,
现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,
而 a=y_-bx_=7/2-0.7*9/2=0.35 ,
所以回归直线方程为 y=bx+a=0.7x+0.35 。
扩展资料:
回归方程是根据样本资料通过回归分析所得到的反映一个变量(因变量)对另一个或一组变量(自变量)的回归关系的数学表达式。回归直线方程用得比较多,可以用最小二乘法求回归直线方程中的a,b,从而得到回归直线方程。
若在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。
因为模型中有残差,并且虚晌残差无法消除,所以就不能用二点确定一条直线的方法来得到方程,要保证几乎所有的实测值聚集在一条回归直线上,就需要它们的纵向距离的平方和到那个最好的拟合直线距离最小。
记此直线方程为(如右所示,记为①式)这里在y的上方加记号“^”,是为了区分Y的实际值y,表示当x取值xi=1,2,……,6)时,Y相应的观察值为yi,而直线上对应于xi的纵坐标是①式叫做Y对x的
回归直线方程,相应的直线叫做回归直线,b叫做回归系数。要确定回归直线方程①,只要确定a与回归系数b。
回归方程的有关量:e.随机变量 ^b.斜率 ^a.截距 —x.x的数学期望 —y.y的数学期望 R.回归方程族誉做的精确度。
回归直线的求法
最小二乘法:
总离差不能用n个离差之和
来表示,兆衡通常是用离差的平方和,即作为总离差,并使之达到最小,这样回归直线就是所有直线中Q取最小值的那一条,这种使“离差平方和最小”的方法,叫做最小二乘法:
由于绝对值使得计算不变,在实际应用中人们更喜欢用:Q=(y1-bx1-a)²+(y2-bx2-a)²+······+(yn-bxn-a)²,这样,问题就归结于:当a,b取什么值时Q最小,即到点直线y=bx+a的“整体距离”最小。
用最小二乘法求回归直线方程中的a,b有下面的公式:
回归方程的写法:spss数据表中有非标准系数一栏,这其实就是回归方程的系数。对应的变量就是和系数相乘。如果有常数项,就不用和变量值相乘。
参考资料:百度百科-回归方程
推荐于2017-12-16 · 知道合伙人教育行家
然后搏桐坦求对应的 x、y 的乘积之和 :3*2.5+4*3+5*4+6*4.5=66.5 ,x_*y_=63/4 ,
接着计算 x 的平方之和:9+16+25+36=86,x_^2=81/4 ,
现在可以计算 b 了:b=(66.5-4*63/4) / (86-4*81/4)=0.7 ,
而 a=y_-bx_=7/2-0.7*9/2=0.35 ,
所以回归直线方程为 y=bx+a=0.7x+0.35 。
广告 您可能关注的内容 |