如图,在平面直角坐标系中,已知A,B,C,三点的坐标分别为A(-2,0),B(6,0),C(0,3) (1) 求经过A,
如图,在平面直角坐标系中,已知A,B,C,三点的坐标分别为A(-2,0),B(6,0),C(0,3)(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x...
如图,在平面直角坐标系中,已知A,B,C,三点的坐标分别为A(-2,0),B(6,0),C(0,3)
(1) 求经过A,B,C三点的抛物线的解析式;
(2) 过C点作CD平行于x轴交抛物线于点D,写出D的坐标,并求AD,BC的交点E的坐标;
(3) 若抛物线的顶点为P,连结PC,PD,判断四边形CEDP的形状,并说明理由 展开
(1) 求经过A,B,C三点的抛物线的解析式;
(2) 过C点作CD平行于x轴交抛物线于点D,写出D的坐标,并求AD,BC的交点E的坐标;
(3) 若抛物线的顶点为P,连结PC,PD,判断四边形CEDP的形状,并说明理由 展开
4个回答
展开全部
解:(1)设y=a(x-x1)(x-x2)
∵过点A(-2,0)、B(6,0)
∴y=a(x+2)(x-6)
∵过点C(0,3)
∴3=a(0+2)(0-6)
解得:a=-1/4
∴y=-1/4x^2+x=3
(2)
对称轴为X=2
所以D(4,3)
因为CB=AD
所以E(2, 2)
(3)
p(2, 4)
因为pc=pd(中垂上的一点到线段两端的距离相等)
同理EC=ED
且点p到cd的距离和点E到CD距离相等
所以四边形CEDP是菱形
∵过点A(-2,0)、B(6,0)
∴y=a(x+2)(x-6)
∵过点C(0,3)
∴3=a(0+2)(0-6)
解得:a=-1/4
∴y=-1/4x^2+x=3
(2)
对称轴为X=2
所以D(4,3)
因为CB=AD
所以E(2, 2)
(3)
p(2, 4)
因为pc=pd(中垂上的一点到线段两端的距离相等)
同理EC=ED
且点p到cd的距离和点E到CD距离相等
所以四边形CEDP是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:⑴ 由于抛物线经过点,可设抛物线的解析式为,则,
解得
∴抛物线的解析式为
⑵ 的坐标为
直线的解析式为
直线的解析式为
由
求得交点的坐标为
⑶ 连结交于,的坐标为
又∵,
∴,且
∴四边形是菱形
解得
∴抛物线的解析式为
⑵ 的坐标为
直线的解析式为
直线的解析式为
由
求得交点的坐标为
⑶ 连结交于,的坐标为
又∵,
∴,且
∴四边形是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-01-08
展开全部
画图就很好做了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询