已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好
(1)求m的值及抛物线的解析式.
(2)设角DBC=阿尔法,角CBE=北他,求sin(阿尔法-北他)的值.
(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与三角形BCE相似?若存在,请指出点P的位置并直接写出P的坐标,若不存在,请说明理由.(求速度啊,悬赏我会加) 展开
(1)
圆心M(1, m)在AB的中垂线上, 所以x = 1为抛物线的对称轴.
C(0, -3)
MC² = (1 - 0)² + (m + 3)² = 5
m = -5或m = -1
A(1 - d, 0), B(1 + d, 0), d > 0
(a) m = -5
MA² = MC² = 5 = (1 - d - 1)² + (0 + 5)²,无解
(b) m = -1
MA² = MC² = 5 = (1 - d - 1)² + (0 + 1)²
d = 2
A(-1, 0), B(3, 0)
y = a(x + 1)(x - 3)
x = 0, y = -3 = -3a, a = 1
y = (x + 1)(x - 3) = x² - 2x - 3
(2)
圆: (x - 1)² + (y + 1)² = 5
x = 0, y = 1, D(0, 1) [y = -1为点C, 舍去]
抛物线中, 取x = 1, y = -4, E(1, -4)
CD = 4, CB= 3√2, BD = √10 = CB
按余弦定理: cosα = (CB² + DB² - CD²)/(2*CB*BD) = 1/√5
sinα = √(1 - cos²α) = 2/√5CE = √2, BE = 2√5
cosβ = (CB² + BE² - CE²)/(2*CB*BE) = 3/√10
sinβ = √(1 - cos²β) = 1/√10
sin(α - β) = sinαcosβ - cosαsinβ = √2/2
(3)
BCE为直角三角形, P(0, 0)或(0, 1/3)
不清楚再问