如图,已知在△ABC中,AB=AC,BD⊥AC,AE⊥BC.求证:∠DBC=二分之一∠BAC.
2个回答
展开全部
方法一
证明:
∵AB=AC
∴∠ABC=∠C
∴∠A=180°-2∠C
∴∠A=90°-1/2∠C
∵BD⊥AC
∴∠CBD=90°-1/2∠C
∴∠CBD=1/2∠A
方法二
作AE⊥BC于点E
∵AB=AC
∴∠CAE=1/2∠A
∵BD⊥AC
∴∠CAE+∠C=∠CBD+∠C=90°
∴∠CBD=∠CAE=1/2∠A
方法三
作∠BAC的平分线AE
∴∠CAE=1/2∠A
∵AB=AC
则AE⊥BC
∴∠CAE+∠C=∠CBD+∠C=90°
∴∠CBD=∠CAE=1/2∠A
证明:
∵AB=AC
∴∠ABC=∠C
∴∠A=180°-2∠C
∴∠A=90°-1/2∠C
∵BD⊥AC
∴∠CBD=90°-1/2∠C
∴∠CBD=1/2∠A
方法二
作AE⊥BC于点E
∵AB=AC
∴∠CAE=1/2∠A
∵BD⊥AC
∴∠CAE+∠C=∠CBD+∠C=90°
∴∠CBD=∠CAE=1/2∠A
方法三
作∠BAC的平分线AE
∴∠CAE=1/2∠A
∵AB=AC
则AE⊥BC
∴∠CAE+∠C=∠CBD+∠C=90°
∴∠CBD=∠CAE=1/2∠A
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询