如图,已知抛物线y=ax2+bx+c经过A(-3,0), B(1,0),C(0,3)三点,其顶点为D,对称轴是
如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点...
如图,已知抛物线y=ax2+bx+c经过A(-3,0),
B(1,0),C(0,3)三点,其顶点为D,对称轴是
直线l,l与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由. 展开
B(1,0),C(0,3)三点,其顶点为D,对称轴是
直线l,l与x轴交于点H.
(1)求该抛物线的解析式;
(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;
(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.
①求S与m的函数关系式;
②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由. 展开
4个回答
展开全部
抛物线y=ax2+bx+c经过A(-3,0),B(1,0),
∴y=a(x+3)(x-1),
又过C(0,3),
∴3=-3a,a=-1,
∴y=-(x+3)(x-1)=-x^2-2x+3.
(2)l:x=-1,C点关于l的对称点C'(-2,3),
PB+PC=PB+PC'>=BC'=3√2,
BC=√10,
∴△PBC周长的最小值=3√2+√10.
(3)D(-1,4),AD:y=2x+6,E(m,2m+6),-3<m<-1,
EF:x=m,F(m,-m^2-2m+3),
①S=(1/2)|EF|*(xD-xA)=-m^2-2m+3-(2m+6)=-m^2-4m-3,-3<m<-1.
②S=1-(m+2)^2,m=-2时S取最大值1,这时E(-2,2).
∴y=a(x+3)(x-1),
又过C(0,3),
∴3=-3a,a=-1,
∴y=-(x+3)(x-1)=-x^2-2x+3.
(2)l:x=-1,C点关于l的对称点C'(-2,3),
PB+PC=PB+PC'>=BC'=3√2,
BC=√10,
∴△PBC周长的最小值=3√2+√10.
(3)D(-1,4),AD:y=2x+6,E(m,2m+6),-3<m<-1,
EF:x=m,F(m,-m^2-2m+3),
①S=(1/2)|EF|*(xD-xA)=-m^2-2m+3-(2m+6)=-m^2-4m-3,-3<m<-1.
②S=1-(m+2)^2,m=-2时S取最大值1,这时E(-2,2).
展开全部
(1)y=-x^2-2x+3
(2)做C点关于I的对称点C',连接BC',与I交点即为△PBC周长的最小值时的P点
可求最小值为3*sqrt(2)+sqrt(10)
(3)无图
(2)做C点关于I的对称点C',连接BC',与I交点即为△PBC周长的最小值时的P点
可求最小值为3*sqrt(2)+sqrt(10)
(3)无图
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
抛物线y=ax2+bx+c经过A(-3,0),B(1,0),
∴y=a(x+3)(x-1),
又过C(0,3),
∴3=-3a,a=-1,
∴y=-(x+3)(x-1)=-x^2-2x+3.
(2)l:x=-1,C点关于l的对称点C'(-2,3),
PB+PC=PB+PC'>=BC'=3√2,
BC=√10,
∴△PBC周长的最小值=3√2+√10.
(3)D(-1,4),AD:y=2x+6,E(m,2m+6),-3<m<-1,
EF:x=m,F(m,-m^2-2m+3),
①S=(1/2)|EF|*(xD-xA)=-m^2-2m+3-(2m+6)=-m^2-4m-3,-3<m<-1.
②S=1-(m+2)^2,m=-2时S取最大值1,这时E(-2,2).
∴y=a(x+3)(x-1),
又过C(0,3),
∴3=-3a,a=-1,
∴y=-(x+3)(x-1)=-x^2-2x+3.
(2)l:x=-1,C点关于l的对称点C'(-2,3),
PB+PC=PB+PC'>=BC'=3√2,
BC=√10,
∴△PBC周长的最小值=3√2+√10.
(3)D(-1,4),AD:y=2x+6,E(m,2m+6),-3<m<-1,
EF:x=m,F(m,-m^2-2m+3),
①S=(1/2)|EF|*(xD-xA)=-m^2-2m+3-(2m+6)=-m^2-4m-3,-3<m<-1.
②S=1-(m+2)^2,m=-2时S取最大值1,这时E(-2,2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)由题意可知:
a+b+c=0
9a?3b+c=0
c=3
解得:
a=?1
b=?2
c=3
∴抛物线的解析式为:y=-x2-2x+3;
(2)∵△pbc的周长为:pb+pc+bc
∵bc是定值,
∴当pb+pc最小时,△pbc的周长最小,
∵点a、点b关于对称轴l对称,
∴连接ac交l于点p,即点p为所求的点
∵ap=bp
∴△pbc的周长最小是:pb+pc+bc=ac+bc
∵a(-3,0),b(1,0),c(0,3),
∴ac=3
2
,bc=
10
;
故△pbc周长的最小值为3
2
+
10
.
(3)①∵
a+b+c=0
9a?3b+c=0
c=3
解得:
a=?1
b=?2
c=3
∴抛物线的解析式为:y=-x2-2x+3;
(2)∵△pbc的周长为:pb+pc+bc
∵bc是定值,
∴当pb+pc最小时,△pbc的周长最小,
∵点a、点b关于对称轴l对称,
∴连接ac交l于点p,即点p为所求的点
∵ap=bp
∴△pbc的周长最小是:pb+pc+bc=ac+bc
∵a(-3,0),b(1,0),c(0,3),
∴ac=3
2
,bc=
10
;
故△pbc周长的最小值为3
2
+
10
.
(3)①∵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询