综述:一般可能会用到分配律:A∨(B∧C)<=>(A∨B)∧(A∨C),A∧(B∨C)<=>(A∧B)∨(A∧C)。
其次若化简式里有蕴涵符号,则可以用蕴涵等值式A→B<=>A∨B进行化简;若求主析取范式,化简式中有p∧q,需给其配上r,可配(p∧q)∧(r∨r),这里用了零律及同一律,这里就不详说了;若求主合取范式,化简式中有p∨q,需给其配上r,可配(p∨q)∨(r∧r),所用同上。当然,也可利用成真赋值,成假赋值互相求出。
主析取范式是大学数学里一门名叫离散数学(Discrete mathematics)的课程中的内容,在离散数学的数理逻辑一节中,利用真值表和等值演算法可以化简或推证一些命题,但是当命题的变元的数目较多时,上述方法都显得不方便,所以需要给出把命题公式规范的方法,即把命题公式化成主合取范式和主析取范式的方法。
析取范式内容简介
析取范式(DNF)是逻辑公式的标准化(或规范化),它是合取子句的析取。作为规范形式,它在自动定理证明中有用。一个逻辑公式被认为是 DNF 的,当且仅当它是一个或多个文字的一个或多个合取的析取。同合取范式(CNF)一样,在 DNF 中的命题算子是与、或和非。非算子只能用做文字的一部分,这意味着它只能领先于命题变量。
等值于(p析取q)合取(q合取r)
等值于(p合取q合取r)析取(q合取q合取r)
等值于(p合取q合取r)析取(q合取r)
等值于(p合取q合取r)析取((q合取r)合取(p析取非p)
等值于(p合取q合取r)析取((q合取r合取p)析取(q合取r合取非p)
等值于(非p合取q合取r)析取(p合取q合取r)
等值于m3析取m7
等值于 西格玛(3,7)