如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比

如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.①求图(1)中,点A... 如图(1),已知,矩形ABCD的边AD=3,对角线长为5,将矩形ABCD置于直角坐标系内,点C与原点O重合,且反比例函数的图象的一个分支位于第一象限.①求图(1)中,点A的坐标是多少?②若矩形ABCD从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数的图象上,如图(2),求反比例函数的表达式.③矩形ABCD继续向x轴的正方向移动,AB、AD与反比例函数图象分别交于P、Q两点,如图(3),设移动总时间为t(1<t<5),分别写出△PBC的面积S1、△QDC的面积S2与t的函数关系式,并求当t为何值时,S2=107S1? 展开
 我来答
J切讲29
2014-09-28 · 超过60用户采纳过TA的回答
知道答主
回答量:133
采纳率:100%
帮助的人:58.2万
展开全部
解:①连接OA,
∵OA=5,AD=3,
由勾股定理得:OD=
OA2?AD2
=
52?32
=4,
∴点A的坐标是(4,3).

②∵4+1=5,
∴1秒后点A的坐标是(5,3),
代入y=
k
x
得:3=
k
5

∴k=15,
∴反比例函数的解析式为:y=
15
x


③∵A在双曲线上时t=1,
∴AP=t-1,
BP=BA-AP=4-(t-1)=5-t,
∴S1=
1
2
BP×BC=
1
2
×(5-t)×3=-
3
2
t+
15
2

t秒后A的坐标是(4+t,3),
把x=4+t代入y=
15
x
得:y=
15
4+t

∴Q的坐标是(4+t,
15
4+t
),
∴S2=
1
2
×DC×DQ=
1
2
×4×
15
4+t
=
30
4+t

即S1=-
3
2
t+
15
2
,S2=
30
4+t

∵S2=
10
7
S1
30
4+t
=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消