在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点
在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大距离为21.(1)求圆O1的标准方程;(...
在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大距离为21.(1)求圆O1的标准方程;(2)过定点P(a,b)作动直线l与圆O,圆O1都相交,且直线l被圆O,圆O1截得的弦长分别为d,d1.若d与d1的比值总等于同一常数λ,求点P的坐标及λ的值.
展开
1个回答
展开全部
(1)∵圆O:x2+y2=64,圆O1与圆O相交,圆O1上的点与圆O上的点之间的最大距离为21,
∴圆O1的半径为4,
∵圆心为O1(9,0),
∴圆O1的标准方程为(x-9)2+y2=16;
(2)当直线l的斜率存在时,设方程为y-b=k(x-a),即kx-y-ka+b=0
∴O,O1到直线l的距离分别为h=
,h1=
∴d=2
,d1=2
∵d与d1的比值总等于同一常数λ,
∴64-(
)2=λ2[16-(
)2]
∴[64-a2-16λ2+λ2(a-9)2]k2+2b[a-λ2(a-9)]k+64-b2-λ2(16-b2)=0
由题意,上式对任意实数k恒成立,所以64-a2-16λ2+λ2(a-9)2=0,2b[a-λ2(a-9)]=0,64-b2-λ2(16-b2)=0同时成立,
①如果b=0,则64-16λ2=0,∴λ=2(舍去负值),从而a=6或18;
∴λ=2,P(6,0),P(18,0)
②如果a-λ2(a-9)=0,显然a=9不满足,从而λ2=
,3a2-43a+192=0,△=432-4×3×192=-455<0,故方程无解,舍去;
当点P的坐标为(6,0)时,直线l的斜率不存在,此时d=4
,d1=2
,∴
=2也满足
综上,满足题意的λ=2,点P有两个,坐标分别为(6,0),(18,0),
斜率不存在时 P(18,0),直线与圆外离,舍去.
∴圆O1的半径为4,
∵圆心为O1(9,0),
∴圆O1的标准方程为(x-9)2+y2=16;
(2)当直线l的斜率存在时,设方程为y-b=k(x-a),即kx-y-ka+b=0
∴O,O1到直线l的距离分别为h=
|ka?b| | ||
|
|?9k+ka?b| | ||
|
∴d=2
64?(
|
16?(
|
∵d与d1的比值总等于同一常数λ,
∴64-(
|ka?b| | ||
|
|?9k+ka?b| | ||
|
∴[64-a2-16λ2+λ2(a-9)2]k2+2b[a-λ2(a-9)]k+64-b2-λ2(16-b2)=0
由题意,上式对任意实数k恒成立,所以64-a2-16λ2+λ2(a-9)2=0,2b[a-λ2(a-9)]=0,64-b2-λ2(16-b2)=0同时成立,
①如果b=0,则64-16λ2=0,∴λ=2(舍去负值),从而a=6或18;
∴λ=2,P(6,0),P(18,0)
②如果a-λ2(a-9)=0,显然a=9不满足,从而λ2=
a |
a?9 |
当点P的坐标为(6,0)时,直线l的斜率不存在,此时d=4
7 |
7 |
d |
d1 |
综上,满足题意的λ=2,点P有两个,坐标分别为(6,0),(18,0),
斜率不存在时 P(18,0),直线与圆外离,舍去.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询