如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:(1)∠C
如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:(1)∠CFD=∠CAD;(2)EG<EF....
如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E为AD的中点,DF⊥BE,垂足为F,CF交AD于点G.求证:(1)∠CFD=∠CAD;(2)EG<EF.
展开
展开全部
解答:(1)证明:连接AF,并延长交BC于N,
∵AD⊥BC,DF⊥BE,
∴∠DFE=∠ADB,
∴∠BDF=∠DEF,
∵BD=DC,DE=AE,
∵∠BDF=∠DEF,∠EFD=∠BFD=90°,
∴△BDF∽△DEF,
∴
=
,
则
=
,
∵∠AEF=∠CDF,
∴△CDF∽△AEF,
∴∠CFD=∠AFE,
∴∠CFD+∠AEF=90°,
∴∠AFE+∠CFE=90°,
∴∠ADC=∠AFC=90°,
∴A、F、D、C四点共圆,
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°,∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD,
∴∠EFG=∠ABD,
∵CF⊥AD,AD⊥BC,
∴F、N、D、G四点共圆,
∴∠EGF=∠AND,
∵∠AND>∠ABD,∠EFG=∠ABD,
∴∠EGF>∠EFG,
∴DF<EF.
∵AD⊥BC,DF⊥BE,
∴∠DFE=∠ADB,
∴∠BDF=∠DEF,
∵BD=DC,DE=AE,
∵∠BDF=∠DEF,∠EFD=∠BFD=90°,
∴△BDF∽△DEF,
∴
BD |
DF |
DE |
EF |
则
DC |
DF |
AE |
EF |
∵∠AEF=∠CDF,
∴△CDF∽△AEF,
∴∠CFD=∠AFE,
∴∠CFD+∠AEF=90°,
∴∠AFE+∠CFE=90°,
∴∠ADC=∠AFC=90°,
∴A、F、D、C四点共圆,
∴∠CFD=∠CAD.
(2)证明:∵∠BAD+∠ABD=90°,∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD,
∴∠EFG=∠ABD,
∵CF⊥AD,AD⊥BC,
∴F、N、D、G四点共圆,
∴∠EGF=∠AND,
∵∠AND>∠ABD,∠EFG=∠ABD,
∴∠EGF>∠EFG,
∴DF<EF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询