已知:如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(
已知:如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点...
已知:如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)若点P在抛物线对称轴上,且PA=PB,求P点的坐标.
展开
1个回答
展开全部
(1)对称轴为x=?
=2.5,
答:抛物线的对称轴是直线x=2.5;
(2)解:令x=0,则y=4,
∴点C的坐标为(0,4),
又BC∥x轴,点B,C关于对称轴对称,
∴点B的坐标为B(5,4)
由AC=BC=5,OA=3,点A在x轴上,
∴点A的坐标为A(-3,0),
∵抛物线过A,
∴9a+15a+4=0,
a=-
,
∴抛物线的解析式是y=-
x2+
x+4,
答:A,B,C三点的坐标分别是(-3,0),(5,4),(0,4),抛物线的解析式是y=-
x2+
x+4.
(3)解:设P点坐标为P(2.5,m),由PA=PB,
∴PA2=PB2,
∴5.52+m2=2.52+(4-m)2,
∴m=-1,
则P点坐标为(2.5,-1),
答:P点坐标为(2.5,-1).
?5a |
2a |
答:抛物线的对称轴是直线x=2.5;
(2)解:令x=0,则y=4,
∴点C的坐标为(0,4),
又BC∥x轴,点B,C关于对称轴对称,
∴点B的坐标为B(5,4)
由AC=BC=5,OA=3,点A在x轴上,
∴点A的坐标为A(-3,0),
∵抛物线过A,
∴9a+15a+4=0,
a=-
1 |
6 |
∴抛物线的解析式是y=-
1 |
6 |
5 |
6 |
答:A,B,C三点的坐标分别是(-3,0),(5,4),(0,4),抛物线的解析式是y=-
1 |
6 |
5 |
6 |
(3)解:设P点坐标为P(2.5,m),由PA=PB,
∴PA2=PB2,
∴5.52+m2=2.52+(4-m)2,
∴m=-1,
则P点坐标为(2.5,-1),
答:P点坐标为(2.5,-1).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询