已知函数f(x)=xlnx,g(x)=k(x-1).(Ⅰ)若f(x)≥g(x)恒成立,求实数k的值;(Ⅱ)若方程f(x
已知函数f(x)=xlnx,g(x)=k(x-1).(Ⅰ)若f(x)≥g(x)恒成立,求实数k的值;(Ⅱ)若方程f(x)=g(x)有一根为x1(x1>1),方程f′(x)...
已知函数f(x)=xlnx,g(x)=k(x-1).(Ⅰ)若f(x)≥g(x)恒成立,求实数k的值;(Ⅱ)若方程f(x)=g(x)有一根为x1(x1>1),方程f′(x)=g′(x)的根为x0,是否存在实数k,使x1x0=k?若存在,求出所有满足条件的k值;若不存在,说明理由.
展开
展开全部
(Ⅰ)注意到函数f(x)的定义域为(0,+∞),
所以f(x)≥g(x)恒成立,等价于
≥
恒成立,
设h(x)=lnx-
(x>0),
则h′(x)=
,------------(2分)
当k≤0时,h′(x)>0对x>0恒成立,所以h(x)是(0,+∞)上的增函数,
注意到h(1)=0,所以0<x<1时,h(x)<0不合题意.-------(4分)
当k>0时,若0<x<k,h′(x)<0;若x>k,h′(x)>0.
所以h(x)是(0,k)上的减函数,是(k,+∞)上的增函数,
故只需h(x)min=h(k)=lnk-k+1≥0.--------(6分)
令u(x)=lnx-x+1(x>0),u′(x)=
,
当0<x<1时,u′(x)>0; 当x>1时,u′(x)<0.
所以u(x)是(0,1)上的增函数,是(1,+∞)上的减函数.
故u(x)≤u(1)=0当且仅当x=1时等号成立.
所以当且仅当k=1时,h(x)≥0成立,即k=1为所求.--------(8分)
(Ⅱ)由(Ⅰ)知当k≤0或k=1时,f(x)=g(x),即h(x)=0仅有唯一解x=1,不合题意;
当0<k<1时,h(x)是(k,+∞)上的增函数,对x>1,有h(x)>h(1)=0,
所以f(x)=g(x)没有大于1的根,不合题意.---------(8分)
当k>1时,由f′(x)=g′(x)解得x0=ek-1,若存在x1=kx0=kek-1,
则lnk-1+e1-k=0,
令v(x)=lnx-1+e1-x,v′(x)=
,
令s(x)=ex-ex,s′(x)=ex-e,当x>1时,总有s′(x)>0,
所以s(x)是(1,+∞)上的增函数,即s(x)=ex-ex>s(1)=0,
故v′(x)>0,v(x)在(1,+∞)上是增函数,
所以v(x)>v(1)=0,即lnk-1+e1-k=0在(1,+∞)无解.
综上可知,不存在满足条件的实数k.----------------------(12分)
所以f(x)≥g(x)恒成立,等价于
f(x) |
x |
g(x) |
x |
设h(x)=lnx-
k(x?1) |
x |
则h′(x)=
x?k |
x2 |
当k≤0时,h′(x)>0对x>0恒成立,所以h(x)是(0,+∞)上的增函数,
注意到h(1)=0,所以0<x<1时,h(x)<0不合题意.-------(4分)
当k>0时,若0<x<k,h′(x)<0;若x>k,h′(x)>0.
所以h(x)是(0,k)上的减函数,是(k,+∞)上的增函数,
故只需h(x)min=h(k)=lnk-k+1≥0.--------(6分)
令u(x)=lnx-x+1(x>0),u′(x)=
1?x |
x |
当0<x<1时,u′(x)>0; 当x>1时,u′(x)<0.
所以u(x)是(0,1)上的增函数,是(1,+∞)上的减函数.
故u(x)≤u(1)=0当且仅当x=1时等号成立.
所以当且仅当k=1时,h(x)≥0成立,即k=1为所求.--------(8分)
(Ⅱ)由(Ⅰ)知当k≤0或k=1时,f(x)=g(x),即h(x)=0仅有唯一解x=1,不合题意;
当0<k<1时,h(x)是(k,+∞)上的增函数,对x>1,有h(x)>h(1)=0,
所以f(x)=g(x)没有大于1的根,不合题意.---------(8分)
当k>1时,由f′(x)=g′(x)解得x0=ek-1,若存在x1=kx0=kek-1,
则lnk-1+e1-k=0,
令v(x)=lnx-1+e1-x,v′(x)=
ex?ex |
xex |
令s(x)=ex-ex,s′(x)=ex-e,当x>1时,总有s′(x)>0,
所以s(x)是(1,+∞)上的增函数,即s(x)=ex-ex>s(1)=0,
故v′(x)>0,v(x)在(1,+∞)上是增函数,
所以v(x)>v(1)=0,即lnk-1+e1-k=0在(1,+∞)无解.
综上可知,不存在满足条件的实数k.----------------------(12分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询