如图,△ABC中,∠BAC=90゜,AC=2AB,D为AC的中点,E为△ABC外一点,且EA=ED,EA⊥ED,试猜想线段BE和CE

如图,△ABC中,∠BAC=90゜,AC=2AB,D为AC的中点,E为△ABC外一点,且EA=ED,EA⊥ED,试猜想线段BE和CE的数量关系和位置关系,并证明.... 如图,△ABC中,∠BAC=90゜,AC=2AB,D为AC的中点,E为△ABC外一点,且EA=ED,EA⊥ED,试猜想线段BE和CE的数量关系和位置关系,并证明. 展开
 我来答
NO5fA嵾
2014-08-23 · TA获得超过181个赞
知道答主
回答量:202
采纳率:50%
帮助的人:64.1万
展开全部
BE=CE,BF⊥CE.
理由如下:∵D为AC的中点,
∴AC=2CD,
∵AC=2AB,
∴AB=CD,
∵EA=ED,EA⊥ED,
∴△AED是等腰直角三角形,
∴∠EAD=∠EDA=45°,
∴∠BAE=∠BAC+∠EAD=90°+45°=135°,
∠CDE=180°-∠ADE=180°-45°=135°,
∴∠BAE=∠CDE,
在△ABE和△DCE中,
EA=ED
∠BAE=∠CDE
AB=CD

∴△ABE≌△DCE(SAS),
∴BE=CE,∠BEA=∠CED,
∴∠BEC=∠BED+∠CED=∠BED+∠BAE=∠AED=90°,
∴BE⊥CE.
故BE=CE,BF⊥CE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式