如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α

如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,E... 如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG. (1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式. 展开
 我来答
坔貮垴
2014-09-30 · 超过52用户采纳过TA的回答
知道答主
回答量:104
采纳率:100%
帮助的人:104万
展开全部
(1)证明见解析(2)∠PAG =45°,PG=OG+BP,理由见解析(3)y= x﹣1

解:(1)证明:∵∠AOG=∠ADG=90°,
∴在Rt△AOG和Rt△ADG中,AO=AD,AG=AG,
∴△AOG≌△ADG(HL)。
(2)∠PAG =45°,PG=OG+BP。理由如下:
由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP。
∵由(1)△AOG≌△ADG,∴∠1=∠DAG。
又∵∠1+∠DAG+∠DAP+∠BAP=90°,
∴2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°。∴∠PAG=∠DAG+∠DAP=45°。
∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP。
∴PG=DG+DP=OG+BP。
(3)∵△AOG≌△ADG,∴∠AGO=∠AGD。
又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC。
又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°。∴∠1=∠2=30°。
在Rt△AOG中,AO=3,OG=AOtan30°=
∴G点坐标为:( ,0),CG=3﹣
在Rt△PCG中,PC= ,∴P点坐标为:(3, )。
设直线PE的解析式为y=kx+b,
,解得
∴直线PE的解析式为y= x﹣1。
(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG。
(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系。
(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式