如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE 的垂线交AC于点G,过点G作CF的垂线
如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证...
如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE 的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.
展开
1个回答
展开全部
证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°, 在△ABE和△CBF中,
∴△ABE≌△CBF(SAS), ∴∠BFC=∠BEA; (2)连接DG,在△ABG和△ADG中,
∴△ABG≌△ADG(SAS), ∴BG=DG,∠2=∠3, ∵BG⊥AE, ∴∠BAE+∠2=90°, ∵∠BAD=∠BAE+∠4=90°, ∴∠2=∠3=∠4, ∵GM⊥CF, ∴∠BCF+∠1=90°, 又∠BCF+∠BFC=90°, ∴∠1=∠BFC=∠2, ∴∠1=∠3, 在△ADG中,∠DGC=∠3+45°, ∴∠DGC也是△CGH的外角, ∴D、G、M三点共线, ∵∠3=∠4(已证), ∴AM=DM, ∵DM=DG+GM=BG+GM, ∴AM=BG+GM. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询