某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这...
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.
展开
1个回答
展开全部
(1)由题意得,销售量=250-10(x-25)=-10x+500,
则w=(x-20)(-10x+500)
=-10x2+700x-10000;
(2)w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,
∴函数图象开口向下,w有最大值,
当x=35时,wmax=2250,
故当单价为35元时,该文具每天的利润最大;
(3)A方案中:20<x≤30,对称轴左侧w随x的增大而增大,
故当x=30时,w有最大值,此时w=2000.
则w=(x-20)(-10x+500)
=-10x2+700x-10000;
(2)w=-10x2+700x-10000=-10(x-35)2+2250.
∵-10<0,
∴函数图象开口向下,w有最大值,
当x=35时,wmax=2250,
故当单价为35元时,该文具每天的利润最大;
(3)A方案中:20<x≤30,对称轴左侧w随x的增大而增大,
故当x=30时,w有最大值,此时w=2000.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询