如图①,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发
如图①,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长度的速度向点A匀速运动,当点...
如图①,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长度的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.(Ⅰ)填空:CP与PD的数量关系是______,CP与PD的位置关系是______;(Ⅱ)用含t的代数式表示点D的坐标;(Ⅲ)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求出t的值,若不能,请说明理由;(Ⅳ)直接写出随着点P的运动,点D运动路线的长.
展开
展开全部
(1)CP与PD的数量关系是CP=2PD,CP与PD的位置关系是CP⊥PD.
故答案为:CP=2PD,CP⊥PD;
(2)∵点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,
∴OP=t,而OC=2,
∴P(t,0),
设CP的中点为F,
则F点的坐标为(
,1),
∴将线段CP的中点F绕点P按顺时针方向旋转90°得点D,其坐标为(t+1,
);
∵D点坐标为(t+1,
,),OA=4,
∴S△DPA=
AP×
=
(4-t)×
=
(4t-t2),
∴当t=2时,S最大=1;
(3)能够成直角三角形.
①当∠PDA=90°时,PC∥AD,
由勾股定理得,PD2+AD2=AP2,
即(
)2+1+(4-t-1)2+(
)2=(4-t)2,
解得,t=2或t=-6(舍去).
∴t=2秒.
②当∠PAD=90°时,此时点D在AB上,
可知,△COP∽△PAD,
∴
=
,
∴
=
,
PA=1,
即t+1=4,t=3秒.
综上,可知当t为2秒或3秒时,△DPA能成为直角三角形.
(4)∵根据点D的运动路线与OB平行且相等,OB=2
,
∴点D运动路线的长为2
.
故答案为:CP=2PD,CP⊥PD;
(2)∵点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,
∴OP=t,而OC=2,
∴P(t,0),
设CP的中点为F,
则F点的坐标为(
t |
2 |
∴将线段CP的中点F绕点P按顺时针方向旋转90°得点D,其坐标为(t+1,
t |
2 |
∵D点坐标为(t+1,
t |
2 |
∴S△DPA=
1 |
2 |
t |
2 |
1 |
2 |
t |
2 |
1 |
4 |
∴当t=2时,S最大=1;
(3)能够成直角三角形.
①当∠PDA=90°时,PC∥AD,
由勾股定理得,PD2+AD2=AP2,
即(
t |
2 |
t |
2 |
解得,t=2或t=-6(舍去).
∴t=2秒.
②当∠PAD=90°时,此时点D在AB上,
可知,△COP∽△PAD,
∴
CP |
PD |
CO |
PA |
∴
2 |
1 |
2 |
PA |
PA=1,
即t+1=4,t=3秒.
综上,可知当t为2秒或3秒时,△DPA能成为直角三角形.
(4)∵根据点D的运动路线与OB平行且相等,OB=2
5 |
∴点D运动路线的长为2
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询