如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接A

如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,... 如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论. 展开
 我来答
马牛其风
2014-10-06 · 超过81用户采纳过TA的回答
知道答主
回答量:135
采纳率:66%
帮助的人:76.2万
展开全部
(1)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;

(2)解:四边形AFCE是正方形.理由如下:
∵AF∥EC,AF=CE,
∴四边形AFCE是平行四边形,
又∵AC=EF,
∴平行四边形AFCE是矩形,
∴∠FCE=∠CFA=90°,
而∠ACB=135°,
∴∠FCA=135°-90°=45°,
∴∠FAC=45°,
∴FC=FA,
∴矩形AFCE是正方形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式