如图,AB是⊙O的直径,点D在AB的延长线上,且DC切⊙O于C点,∠CAD=30°,延长DC到点E,使∠CAE=∠CAD.(

如图,AB是⊙O的直径,点D在AB的延长线上,且DC切⊙O于C点,∠CAD=30°,延长DC到点E,使∠CAE=∠CAD.(1)试探求AD与⊙O的半径有怎样的数量关系,并... 如图,AB是⊙O的直径,点D在AB的延长线上,且DC切⊙O于C点,∠CAD=30°,延长DC到点E,使∠CAE=∠CAD.(1)试探求AD与⊙O的半径有怎样的数量关系,并加以证明;(2)求证:AC?CD=AE?OD. 展开
 我来答
恭介线8847
2014-08-30 · TA获得超过277个赞
知道答主
回答量:116
采纳率:100%
帮助的人:47.3万
展开全部
解答:(1)解:AD是⊙O半径的3倍.
证明:连接OC,
∵DE是切线
∴OC⊥DE
∵OC=OA
∴∠CAO=∠OCA=30°
∴∠COD=∠CAO+∠OCA=60°
∴∠D=30°
∴OD=2OC
∴AD=3OC;

(2)证明:∵∠CAE=∠CAD=30°
∴∠EAD=60°=∠COD
∴OC∥AE
∴∠E=∠OCD=90°
又∠EAC=∠D=30°
∴△EAC∽△CDO
∴AE:CD=AC:OD
∴AC?CD=AE?OD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式